Metamath Proof Explorer


Theorem dprdlub

Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Hypotheses dprdlub.1 φGdomDProdS
dprdlub.2 φdomS=I
dprdlub.3 φTSubGrpG
dprdlub.4 φkISkT
Assertion dprdlub φGDProdST

Proof

Step Hyp Ref Expression
1 dprdlub.1 φGdomDProdS
2 dprdlub.2 φdomS=I
3 dprdlub.3 φTSubGrpG
4 dprdlub.4 φkISkT
5 eqid 0G=0G
6 eqid hiISi|finSupp0Gh=hiISi|finSupp0Gh
7 5 6 dprdval GdomDProdSdomS=IGDProdS=ranfhiISi|finSupp0GhGf
8 1 2 7 syl2anc φGDProdS=ranfhiISi|finSupp0GhGf
9 eqid CntzG=CntzG
10 1 adantr φfhiISi|finSupp0GhGdomDProdS
11 dprdgrp GdomDProdSGGrp
12 grpmnd GGrpGMnd
13 10 11 12 3syl φfhiISi|finSupp0GhGMnd
14 1 2 dprddomcld φIV
15 14 adantr φfhiISi|finSupp0GhIV
16 3 adantr φfhiISi|finSupp0GhTSubGrpG
17 subgsubm TSubGrpGTSubMndG
18 16 17 syl φfhiISi|finSupp0GhTSubMndG
19 2 adantr φfhiISi|finSupp0GhdomS=I
20 simpr φfhiISi|finSupp0GhfhiISi|finSupp0Gh
21 eqid BaseG=BaseG
22 6 10 19 20 21 dprdff φfhiISi|finSupp0Ghf:IBaseG
23 22 ffnd φfhiISi|finSupp0GhfFnI
24 4 adantlr φfhiISi|finSupp0GhkISkT
25 6 10 19 20 dprdfcl φfhiISi|finSupp0GhkIfkSk
26 24 25 sseldd φfhiISi|finSupp0GhkIfkT
27 26 ralrimiva φfhiISi|finSupp0GhkIfkT
28 ffnfv f:ITfFnIkIfkT
29 23 27 28 sylanbrc φfhiISi|finSupp0Ghf:IT
30 6 10 19 20 9 dprdfcntz φfhiISi|finSupp0GhranfCntzGranf
31 6 10 19 20 dprdffsupp φfhiISi|finSupp0GhfinSupp0Gf
32 5 9 13 15 18 29 30 31 gsumzsubmcl φfhiISi|finSupp0GhGfT
33 32 fmpttd φfhiISi|finSupp0GhGf:hiISi|finSupp0GhT
34 33 frnd φranfhiISi|finSupp0GhGfT
35 8 34 eqsstrd φGDProdST