Description: The direct product is smaller than any subgroup which contains the factors. (Contributed by Mario Carneiro, 25-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dprdlub.1 | |
|
dprdlub.2 | |
||
dprdlub.3 | |
||
dprdlub.4 | |
||
Assertion | dprdlub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dprdlub.1 | |
|
2 | dprdlub.2 | |
|
3 | dprdlub.3 | |
|
4 | dprdlub.4 | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 5 6 | dprdval | |
8 | 1 2 7 | syl2anc | |
9 | eqid | |
|
10 | 1 | adantr | |
11 | dprdgrp | |
|
12 | grpmnd | |
|
13 | 10 11 12 | 3syl | |
14 | 1 2 | dprddomcld | |
15 | 14 | adantr | |
16 | 3 | adantr | |
17 | subgsubm | |
|
18 | 16 17 | syl | |
19 | 2 | adantr | |
20 | simpr | |
|
21 | eqid | |
|
22 | 6 10 19 20 21 | dprdff | |
23 | 22 | ffnd | |
24 | 4 | adantlr | |
25 | 6 10 19 20 | dprdfcl | |
26 | 24 25 | sseldd | |
27 | 26 | ralrimiva | |
28 | ffnfv | |
|
29 | 23 27 28 | sylanbrc | |
30 | 6 10 19 20 9 | dprdfcntz | |
31 | 6 10 19 20 | dprdffsupp | |
32 | 5 9 13 15 18 29 30 31 | gsumzsubmcl | |
33 | 32 | fmpttd | |
34 | 33 | frnd | |
35 | 8 34 | eqsstrd | |