Metamath Proof Explorer


Theorem dprdsubg

Description: The internal direct product of a family of subgroups is a subgroup. (Contributed by Mario Carneiro, 25-Apr-2016)

Ref Expression
Assertion dprdsubg G dom DProd S G DProd S SubGrp G

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 1 dprdssv G DProd S Base G
3 2 a1i G dom DProd S G DProd S Base G
4 eqid 0 G = 0 G
5 eqid h i dom S S i | finSupp 0 G h = h i dom S S i | finSupp 0 G h
6 id G dom DProd S G dom DProd S
7 eqidd G dom DProd S dom S = dom S
8 fvex 0 G V
9 fnconstg 0 G V dom S × 0 G Fn dom S
10 8 9 mp1i G dom DProd S dom S × 0 G Fn dom S
11 8 fvconst2 k dom S dom S × 0 G k = 0 G
12 11 adantl G dom DProd S k dom S dom S × 0 G k = 0 G
13 dprdf G dom DProd S S : dom S SubGrp G
14 13 ffvelrnda G dom DProd S k dom S S k SubGrp G
15 4 subg0cl S k SubGrp G 0 G S k
16 14 15 syl G dom DProd S k dom S 0 G S k
17 12 16 eqeltrd G dom DProd S k dom S dom S × 0 G k S k
18 17 ralrimiva G dom DProd S k dom S dom S × 0 G k S k
19 df-nel dom S V ¬ dom S V
20 dprddomprc dom S V ¬ G dom DProd S
21 19 20 sylbir ¬ dom S V ¬ G dom DProd S
22 21 con4i G dom DProd S dom S V
23 8 a1i G dom DProd S 0 G V
24 22 23 fczfsuppd G dom DProd S finSupp 0 G dom S × 0 G
25 5 6 7 dprdw G dom DProd S dom S × 0 G h i dom S S i | finSupp 0 G h dom S × 0 G Fn dom S k dom S dom S × 0 G k S k finSupp 0 G dom S × 0 G
26 10 18 24 25 mpbir3and G dom DProd S dom S × 0 G h i dom S S i | finSupp 0 G h
27 4 5 6 7 26 eldprdi G dom DProd S G dom S × 0 G G DProd S
28 27 ne0d G dom DProd S G DProd S
29 eqid dom S = dom S
30 4 5 eldprd dom S = dom S x G DProd S G dom DProd S f h i dom S S i | finSupp 0 G h x = G f
31 30 baibd dom S = dom S G dom DProd S x G DProd S f h i dom S S i | finSupp 0 G h x = G f
32 4 5 eldprd dom S = dom S y G DProd S G dom DProd S g h i dom S S i | finSupp 0 G h y = G g
33 32 baibd dom S = dom S G dom DProd S y G DProd S g h i dom S S i | finSupp 0 G h y = G g
34 31 33 anbi12d dom S = dom S G dom DProd S x G DProd S y G DProd S f h i dom S S i | finSupp 0 G h x = G f g h i dom S S i | finSupp 0 G h y = G g
35 29 34 mpan G dom DProd S x G DProd S y G DProd S f h i dom S S i | finSupp 0 G h x = G f g h i dom S S i | finSupp 0 G h y = G g
36 reeanv f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h x = G f y = G g f h i dom S S i | finSupp 0 G h x = G f g h i dom S S i | finSupp 0 G h y = G g
37 simpl G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h G dom DProd S
38 eqidd G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h dom S = dom S
39 simprl G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h f h i dom S S i | finSupp 0 G h
40 simprr G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h
41 eqid - G = - G
42 4 5 37 38 39 40 41 dprdfsub G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h f - G f g h i dom S S i | finSupp 0 G h G f - G f g = G f - G G g
43 42 simprd G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h G f - G f g = G f - G G g
44 42 simpld G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h f - G f g h i dom S S i | finSupp 0 G h
45 4 5 37 38 44 eldprdi G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h G f - G f g G DProd S
46 43 45 eqeltrrd G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h G f - G G g G DProd S
47 oveq12 x = G f y = G g x - G y = G f - G G g
48 47 eleq1d x = G f y = G g x - G y G DProd S G f - G G g G DProd S
49 46 48 syl5ibrcom G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h x = G f y = G g x - G y G DProd S
50 49 rexlimdvva G dom DProd S f h i dom S S i | finSupp 0 G h g h i dom S S i | finSupp 0 G h x = G f y = G g x - G y G DProd S
51 36 50 syl5bir G dom DProd S f h i dom S S i | finSupp 0 G h x = G f g h i dom S S i | finSupp 0 G h y = G g x - G y G DProd S
52 35 51 sylbid G dom DProd S x G DProd S y G DProd S x - G y G DProd S
53 52 ralrimivv G dom DProd S x G DProd S y G DProd S x - G y G DProd S
54 dprdgrp G dom DProd S G Grp
55 1 41 issubg4 G Grp G DProd S SubGrp G G DProd S Base G G DProd S x G DProd S y G DProd S x - G y G DProd S
56 54 55 syl G dom DProd S G DProd S SubGrp G G DProd S Base G G DProd S x G DProd S y G DProd S x - G y G DProd S
57 3 28 53 56 mpbir3and G dom DProd S G DProd S SubGrp G