Metamath Proof Explorer


Theorem drsdirfi

Description: Anyfinite number of elements in a directed set have a common upper bound. Here is where the nonemptiness constraint in df-drs first comes into play; without it we would need an additional constraint that X not be empty. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses drsbn0.b B=BaseK
drsdirfi.l ˙=K
Assertion drsdirfi KDirsetXBXFinyBzXz˙y

Proof

Step Hyp Ref Expression
1 drsbn0.b B=BaseK
2 drsdirfi.l ˙=K
3 sseq1 a=aBB
4 3 anbi2d a=KDirsetaBKDirsetB
5 raleq a=zaz˙yzz˙y
6 5 rexbidv a=yBzaz˙yyBzz˙y
7 4 6 imbi12d a=KDirsetaByBzaz˙yKDirsetByBzz˙y
8 sseq1 a=baBbB
9 8 anbi2d a=bKDirsetaBKDirsetbB
10 raleq a=bzaz˙yzbz˙y
11 10 rexbidv a=byBzaz˙yyBzbz˙y
12 9 11 imbi12d a=bKDirsetaByBzaz˙yKDirsetbByBzbz˙y
13 sseq1 a=bcaBbcB
14 13 anbi2d a=bcKDirsetaBKDirsetbcB
15 raleq a=bczaz˙yzbcz˙y
16 15 rexbidv a=bcyBzaz˙yyBzbcz˙y
17 14 16 imbi12d a=bcKDirsetaByBzaz˙yKDirsetbcByBzbcz˙y
18 sseq1 a=XaBXB
19 18 anbi2d a=XKDirsetaBKDirsetXB
20 raleq a=Xzaz˙yzXz˙y
21 20 rexbidv a=XyBzaz˙yyBzXz˙y
22 19 21 imbi12d a=XKDirsetaByBzaz˙yKDirsetXByBzXz˙y
23 1 drsbn0 KDirsetB
24 ral0 zz˙y
25 24 jctr yByBzz˙y
26 25 eximi yyByyBzz˙y
27 n0 ByyB
28 df-rex yBzz˙yyyBzz˙y
29 26 27 28 3imtr4i ByBzz˙y
30 23 29 syl KDirsetyBzz˙y
31 30 adantr KDirsetByBzz˙y
32 ssun1 bbc
33 sstr bbcbcBbB
34 32 33 mpan bcBbB
35 34 anim2i KDirsetbcBKDirsetbB
36 breq2 y=az˙yz˙a
37 36 ralbidv y=azbz˙yzbz˙a
38 37 cbvrexvw yBzbz˙yaBzbz˙a
39 simplrr KDirsetbcBaBzbz˙ayBa˙yc˙yzbz˙a
40 drsprs KDirsetKProset
41 40 ad5antr KDirsetbcBaByBa˙yc˙yzbz˙aKProset
42 34 ad2antlr KDirsetbcBaBbB
43 42 adantr KDirsetbcBaByBa˙yc˙ybB
44 43 sselda KDirsetbcBaByBa˙yc˙yzbzB
45 44 adantr KDirsetbcBaByBa˙yc˙yzbz˙azB
46 simp-4r KDirsetbcBaByBa˙yc˙yzbz˙aaB
47 simprl KDirsetbcBaByBa˙yc˙yyB
48 47 ad2antrr KDirsetbcBaByBa˙yc˙yzbz˙ayB
49 simpr KDirsetbcBaByBa˙yc˙yzbz˙az˙a
50 simprrl KDirsetbcBaByBa˙yc˙ya˙y
51 50 ad2antrr KDirsetbcBaByBa˙yc˙yzbz˙aa˙y
52 1 2 prstr KProsetzBaByBz˙aa˙yz˙y
53 41 45 46 48 49 51 52 syl132anc KDirsetbcBaByBa˙yc˙yzbz˙az˙y
54 53 ex KDirsetbcBaByBa˙yc˙yzbz˙az˙y
55 54 ralimdva KDirsetbcBaByBa˙yc˙yzbz˙azbz˙y
56 55 adantlrr KDirsetbcBaBzbz˙ayBa˙yc˙yzbz˙azbz˙y
57 39 56 mpd KDirsetbcBaBzbz˙ayBa˙yc˙yzbz˙y
58 simprrr KDirsetbcBaBzbz˙ayBa˙yc˙yc˙y
59 vex cV
60 breq1 z=cz˙yc˙y
61 59 60 ralsn zcz˙yc˙y
62 58 61 sylibr KDirsetbcBaBzbz˙ayBa˙yc˙yzcz˙y
63 ralun zbz˙yzcz˙yzbcz˙y
64 57 62 63 syl2anc KDirsetbcBaBzbz˙ayBa˙yc˙yzbcz˙y
65 simpll KDirsetbcBaBzbz˙aKDirset
66 simprl KDirsetbcBaBzbz˙aaB
67 ssun2 cbc
68 sstr cbcbcBcB
69 67 68 mpan bcBcB
70 59 snss cBcB
71 69 70 sylibr bcBcB
72 71 ad2antlr KDirsetbcBaBzbz˙acB
73 1 2 drsdir KDirsetaBcByBa˙yc˙y
74 65 66 72 73 syl3anc KDirsetbcBaBzbz˙ayBa˙yc˙y
75 64 74 reximddv KDirsetbcBaBzbz˙ayBzbcz˙y
76 75 rexlimdvaa KDirsetbcBaBzbz˙ayBzbcz˙y
77 38 76 biimtrid KDirsetbcByBzbz˙yyBzbcz˙y
78 35 77 embantd KDirsetbcBKDirsetbByBzbz˙yyBzbcz˙y
79 78 com12 KDirsetbByBzbz˙yKDirsetbcByBzbcz˙y
80 79 a1i bFinKDirsetbByBzbz˙yKDirsetbcByBzbcz˙y
81 7 12 17 22 31 80 findcard2 XFinKDirsetXByBzXz˙y
82 81 com12 KDirsetXBXFinyBzXz˙y
83 82 3impia KDirsetXBXFinyBzXz˙y