| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvcj.f |  | 
						
							| 2 |  | dvcj.x |  | 
						
							| 3 |  | dvcj.c |  | 
						
							| 4 |  | ax-resscn |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 |  | tgioo4 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 5 1 2 6 7 | dvbssntr |  | 
						
							| 9 | 8 3 | sseldd |  | 
						
							| 10 | 2 4 | sstrdi |  | 
						
							| 11 | 4 | a1i |  | 
						
							| 12 |  | simpl |  | 
						
							| 13 |  | simpr |  | 
						
							| 14 | 11 12 13 | dvbss |  | 
						
							| 15 | 1 2 14 | syl2anc |  | 
						
							| 16 | 15 3 | sseldd |  | 
						
							| 17 | 1 10 16 | dvlem |  | 
						
							| 18 | 17 | fmpttd |  | 
						
							| 19 |  | ssidd |  | 
						
							| 20 | 7 | cnfldtopon |  | 
						
							| 21 | 20 | toponrestid |  | 
						
							| 22 |  | dvf |  | 
						
							| 23 |  | ffun |  | 
						
							| 24 |  | funfvbrb |  | 
						
							| 25 | 22 23 24 | mp2b |  | 
						
							| 26 | 3 25 | sylib |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 6 7 27 5 1 2 | eldv |  | 
						
							| 29 | 26 28 | mpbid |  | 
						
							| 30 | 29 | simprd |  | 
						
							| 31 |  | cjcncf |  | 
						
							| 32 | 7 | cncfcn1 |  | 
						
							| 33 | 31 32 | eleqtri |  | 
						
							| 34 | 22 | ffvelcdmi |  | 
						
							| 35 | 3 34 | syl |  | 
						
							| 36 |  | unicntop |  | 
						
							| 37 | 36 | cncnpi |  | 
						
							| 38 | 33 35 37 | sylancr |  | 
						
							| 39 | 18 19 7 21 30 38 | limccnp |  | 
						
							| 40 |  | cjf |  | 
						
							| 41 | 40 | a1i |  | 
						
							| 42 | 41 17 | cofmpt |  | 
						
							| 43 | 1 | adantr |  | 
						
							| 44 |  | eldifi |  | 
						
							| 45 | 44 | adantl |  | 
						
							| 46 | 43 45 | ffvelcdmd |  | 
						
							| 47 | 1 16 | ffvelcdmd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 | 46 48 | subcld |  | 
						
							| 50 | 2 | sselda |  | 
						
							| 51 | 44 50 | sylan2 |  | 
						
							| 52 | 2 16 | sseldd |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 | 51 53 | resubcld |  | 
						
							| 55 | 54 | recnd |  | 
						
							| 56 | 51 | recnd |  | 
						
							| 57 | 53 | recnd |  | 
						
							| 58 |  | eldifsni |  | 
						
							| 59 | 58 | adantl |  | 
						
							| 60 | 56 57 59 | subne0d |  | 
						
							| 61 | 49 55 60 | cjdivd |  | 
						
							| 62 |  | cjsub |  | 
						
							| 63 | 46 48 62 | syl2anc |  | 
						
							| 64 |  | fvco3 |  | 
						
							| 65 | 1 44 64 | syl2an |  | 
						
							| 66 |  | fvco3 |  | 
						
							| 67 | 1 16 66 | syl2anc |  | 
						
							| 68 | 67 | adantr |  | 
						
							| 69 | 65 68 | oveq12d |  | 
						
							| 70 | 63 69 | eqtr4d |  | 
						
							| 71 | 54 | cjred |  | 
						
							| 72 | 70 71 | oveq12d |  | 
						
							| 73 | 61 72 | eqtrd |  | 
						
							| 74 | 73 | mpteq2dva |  | 
						
							| 75 | 42 74 | eqtrd |  | 
						
							| 76 | 75 | oveq1d |  | 
						
							| 77 | 39 76 | eleqtrd |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 |  | fco |  | 
						
							| 80 | 40 1 79 | sylancr |  | 
						
							| 81 | 6 7 78 5 80 2 | eldv |  | 
						
							| 82 | 9 77 81 | mpbir2and |  |