Description: Lemma for dvfsumrlim . Satisfy the assumption of dvfsumlem4 . (Contributed by Mario Carneiro, 18-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvfsum.s | |
|
dvfsum.z | |
||
dvfsum.m | |
||
dvfsum.d | |
||
dvfsum.md | |
||
dvfsum.t | |
||
dvfsum.a | |
||
dvfsum.b1 | |
||
dvfsum.b2 | |
||
dvfsum.b3 | |
||
dvfsum.c | |
||
dvfsumrlim.l | |
||
dvfsumrlim.g | |
||
dvfsumrlim.k | |
||
Assertion | dvfsumrlimge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvfsum.s | |
|
2 | dvfsum.z | |
|
3 | dvfsum.m | |
|
4 | dvfsum.d | |
|
5 | dvfsum.md | |
|
6 | dvfsum.t | |
|
7 | dvfsum.a | |
|
8 | dvfsum.b1 | |
|
9 | dvfsum.b2 | |
|
10 | dvfsum.b3 | |
|
11 | dvfsum.c | |
|
12 | dvfsumrlim.l | |
|
13 | dvfsumrlim.g | |
|
14 | dvfsumrlim.k | |
|
15 | ioossre | |
|
16 | 1 15 | eqsstri | |
17 | simprl | |
|
18 | 16 17 | sselid | |
19 | 18 | rexrd | |
20 | 18 | renepnfd | |
21 | icopnfsup | |
|
22 | 19 20 21 | syl2anc | |
23 | 6 | rexrd | |
24 | 17 1 | eleqtrdi | |
25 | 23 | adantr | |
26 | elioopnf | |
|
27 | 25 26 | syl | |
28 | 24 27 | mpbid | |
29 | 28 | simprd | |
30 | df-ioo | |
|
31 | df-ico | |
|
32 | xrltletr | |
|
33 | 30 31 32 | ixxss1 | |
34 | 23 29 33 | syl2an2r | |
35 | 34 1 | sseqtrrdi | |
36 | 11 | cbvmptv | |
37 | 14 | adantr | |
38 | 36 37 | eqbrtrrid | |
39 | 35 38 | rlimres2 | |
40 | 16 | a1i | |
41 | 40 7 8 10 | dvmptrecl | |
42 | 41 | adantrr | |
43 | 42 | recnd | |
44 | rlimconst | |
|
45 | 40 43 44 | syl2an2r | |
46 | 35 45 | rlimres2 | |
47 | 41 | ralrimiva | |
48 | 47 | adantr | |
49 | 35 | sselda | |
50 | 11 | eleq1d | |
51 | 50 | rspccva | |
52 | 48 49 51 | syl2an2r | |
53 | 42 | adantr | |
54 | simpll | |
|
55 | simplrl | |
|
56 | simplrr | |
|
57 | elicopnf | |
|
58 | 18 57 | syl | |
59 | 58 | simplbda | |
60 | 54 55 49 56 59 12 | syl122anc | |
61 | 22 39 46 52 53 60 | rlimle | |