Metamath Proof Explorer


Theorem dvfsumrlimge0

Description: Lemma for dvfsumrlim . Satisfy the assumption of dvfsumlem4 . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s S=T+∞
dvfsum.z Z=M
dvfsum.m φM
dvfsum.d φD
dvfsum.md φMD+1
dvfsum.t φT
dvfsum.a φxSA
dvfsum.b1 φxSBV
dvfsum.b2 φxZB
dvfsum.b3 φdxSAdx=xSB
dvfsum.c x=kB=C
dvfsumrlim.l φxSkSDxxkCB
dvfsumrlim.g G=xSk=MxCA
dvfsumrlim.k φxSB0
Assertion dvfsumrlimge0 φxSDx0B

Proof

Step Hyp Ref Expression
1 dvfsum.s S=T+∞
2 dvfsum.z Z=M
3 dvfsum.m φM
4 dvfsum.d φD
5 dvfsum.md φMD+1
6 dvfsum.t φT
7 dvfsum.a φxSA
8 dvfsum.b1 φxSBV
9 dvfsum.b2 φxZB
10 dvfsum.b3 φdxSAdx=xSB
11 dvfsum.c x=kB=C
12 dvfsumrlim.l φxSkSDxxkCB
13 dvfsumrlim.g G=xSk=MxCA
14 dvfsumrlim.k φxSB0
15 ioossre T+∞
16 1 15 eqsstri S
17 simprl φxSDxxS
18 16 17 sselid φxSDxx
19 18 rexrd φxSDxx*
20 18 renepnfd φxSDxx+∞
21 icopnfsup x*x+∞supx+∞*<=+∞
22 19 20 21 syl2anc φxSDxsupx+∞*<=+∞
23 6 rexrd φT*
24 17 1 eleqtrdi φxSDxxT+∞
25 23 adantr φxSDxT*
26 elioopnf T*xT+∞xT<x
27 25 26 syl φxSDxxT+∞xT<x
28 24 27 mpbid φxSDxxT<x
29 28 simprd φxSDxT<x
30 df-ioo .=u*,v*w*|u<ww<v
31 df-ico .=u*,v*w*|uww<v
32 xrltletr T*x*z*T<xxzT<z
33 30 31 32 ixxss1 T*T<xx+∞T+∞
34 23 29 33 syl2an2r φxSDxx+∞T+∞
35 34 1 sseqtrrdi φxSDxx+∞S
36 11 cbvmptv xSB=kSC
37 14 adantr φxSDxxSB0
38 36 37 eqbrtrrid φxSDxkSC0
39 35 38 rlimres2 φxSDxkx+∞C0
40 16 a1i φS
41 40 7 8 10 dvmptrecl φxSB
42 41 adantrr φxSDxB
43 42 recnd φxSDxB
44 rlimconst SBkSBB
45 40 43 44 syl2an2r φxSDxkSBB
46 35 45 rlimres2 φxSDxkx+∞BB
47 41 ralrimiva φxSB
48 47 adantr φxSDxxSB
49 35 sselda φxSDxkx+∞kS
50 11 eleq1d x=kBC
51 50 rspccva xSBkSC
52 48 49 51 syl2an2r φxSDxkx+∞C
53 42 adantr φxSDxkx+∞B
54 simpll φxSDxkx+∞φ
55 simplrl φxSDxkx+∞xS
56 simplrr φxSDxkx+∞Dx
57 elicopnf xkx+∞kxk
58 18 57 syl φxSDxkx+∞kxk
59 58 simplbda φxSDxkx+∞xk
60 54 55 49 56 59 12 syl122anc φxSDxkx+∞CB
61 22 39 46 52 53 60 rlimle φxSDx0B