Metamath Proof Explorer


Theorem dvrelog2b

Description: Derivative of the binary logarithm. (Contributed by metakunt, 11-Aug-2024)

Ref Expression
Hypotheses dvrelog2b.1 φA*
dvrelog2b.2 φB*
dvrelog2b.3 φ0A
dvrelog2b.4 φAB
dvrelog2b.5 F=xABlog2x
dvrelog2b.6 G=xAB1xlog2
Assertion dvrelog2b φDF=G

Proof

Step Hyp Ref Expression
1 dvrelog2b.1 φA*
2 dvrelog2b.2 φB*
3 dvrelog2b.3 φ0A
4 dvrelog2b.4 φAB
5 dvrelog2b.5 F=xABlog2x
6 dvrelog2b.6 G=xAB1xlog2
7 5 a1i φF=xABlog2x
8 2cnd φxAB2
9 2ne0 20
10 9 a1i φxAB20
11 1red φxAB1
12 1lt2 1<2
13 12 a1i φxAB1<2
14 11 13 ltned φxAB12
15 14 necomd φxAB21
16 10 15 nelprd φxAB¬201
17 8 16 eldifd φxAB201
18 elioore xABx
19 recn xx
20 18 19 syl xABx
21 20 adantl φxABx
22 elsni x0x=0
23 0xr 0*
24 23 a1i φ0*
25 xrlenlt 0*A*0A¬A<0
26 24 1 25 syl2anc φ0A¬A<0
27 3 26 mpbid φ¬A<0
28 27 orcd φ¬A<0¬0<B
29 ianor ¬A<00<B¬A<0¬0<B
30 28 29 sylibr φ¬A<00<B
31 elioo5 A*B*0*0ABA<00<B
32 1 2 24 31 syl3anc φ0ABA<00<B
33 32 notbid φ¬0AB¬A<00<B
34 30 33 mpbird φ¬0AB
35 34 a1d φ0AB¬0AB
36 35 imp φ0AB¬0AB
37 36 pm2.01da φ¬0AB
38 37 adantr φx=0¬0AB
39 eleq1 x=0xAB0AB
40 39 adantl φx=0xAB0AB
41 38 40 mtbird φx=0¬xAB
42 22 41 sylan2 φx0¬xAB
43 42 ex φx0¬xAB
44 43 con2d φxAB¬x0
45 44 imp φxAB¬x0
46 21 45 eldifd φxABx0
47 logbval 201x0log2x=logxlog2
48 17 46 47 syl2anc φxABlog2x=logxlog2
49 48 mpteq2dva φxABlog2x=xABlogxlog2
50 7 49 eqtrd φF=xABlogxlog2
51 50 oveq2d φDF=dxABlogxlog2dx
52 reelprrecn
53 52 a1i φ
54 41 ex φx=0¬xAB
55 54 con2d φxAB¬x=0
56 biidd xABx=0x=0
57 56 necon3bbid xAB¬x=0x0
58 57 pm5.74i xAB¬x=0xABx0
59 55 58 sylib φxABx0
60 59 imp φxABx0
61 21 60 logcld φxABlogx
62 18 adantl φxABx
63 11 62 60 redivcld φxAB1x
64 eqid xABlogx=xABlogx
65 eqid xAB1x=xAB1x
66 1 2 3 4 64 65 dvrelog3 φdxABlogxdx=xAB1x
67 2cnd φ2
68 9 a1i φ20
69 67 68 logcld φlog2
70 0red φ0
71 2rp 2+
72 loggt0b 2+0<log21<2
73 71 72 ax-mp 0<log21<2
74 12 73 mpbir 0<log2
75 74 a1i φ0<log2
76 70 75 ltned φ0log2
77 76 necomd φlog20
78 53 61 63 66 69 77 dvmptdivc φdxABlogxlog2dx=xAB1xlog2
79 8 10 logcld φxABlog2
80 77 adantr φxABlog20
81 21 79 60 80 recdiv2d φxAB1xlog2=1xlog2
82 81 mpteq2dva φxAB1xlog2=xAB1xlog2
83 6 a1i φG=xAB1xlog2
84 83 eqcomd φxAB1xlog2=G
85 82 84 eqtrd φxAB1xlog2=G
86 78 85 eqtrd φdxABlogxlog2dx=G
87 51 86 eqtrd φDF=G