Metamath Proof Explorer


Theorem ef01bndlem

Description: Lemma for sin01bnd and cos01bnd . (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Hypothesis ef01bnd.1 F=n0iAnn!
Assertion ef01bndlem A01k4Fk<A46

Proof

Step Hyp Ref Expression
1 ef01bnd.1 F=n0iAnn!
2 ax-icn i
3 0xr 0*
4 1re 1
5 elioc2 0*1A01A0<AA1
6 3 4 5 mp2an A01A0<AA1
7 6 simp1bi A01A
8 7 recnd A01A
9 mulcl iAiA
10 2 8 9 sylancr A01iA
11 4nn0 40
12 1 eftlcl iA40k4Fk
13 10 11 12 sylancl A01k4Fk
14 13 abscld A01k4Fk
15 reexpcl A40A4
16 7 11 15 sylancl A01A4
17 4re 4
18 17 4 readdcli 4+1
19 faccl 404!
20 11 19 ax-mp 4!
21 4nn 4
22 20 21 nnmulcli 4!4
23 nndivre 4+14!44+14!4
24 18 22 23 mp2an 4+14!4
25 remulcl A44+14!4A44+14!4
26 16 24 25 sylancl A01A44+14!4
27 6nn 6
28 nndivre A46A46
29 16 27 28 sylancl A01A46
30 eqid n0iAnn!=n0iAnn!
31 eqid n0iA44!14+1n=n0iA44!14+1n
32 21 a1i A014
33 absmul iAiA=iA
34 2 8 33 sylancr A01iA=iA
35 absi i=1
36 35 oveq1i iA=1A
37 6 simp2bi A010<A
38 7 37 elrpd A01A+
39 rpre A+A
40 rpge0 A+0A
41 39 40 absidd A+A=A
42 38 41 syl A01A=A
43 42 oveq2d A011A=1A
44 36 43 eqtrid A01iA=1A
45 8 mullidd A011A=A
46 34 44 45 3eqtrd A01iA=A
47 6 simp3bi A01A1
48 46 47 eqbrtrd A01iA1
49 1 30 31 32 10 48 eftlub A01k4FkiA44+14!4
50 46 oveq1d A01iA4=A4
51 50 oveq1d A01iA44+14!4=A44+14!4
52 49 51 breqtrd A01k4FkA44+14!4
53 3pos 0<3
54 0re 0
55 3re 3
56 5re 5
57 54 55 56 ltadd1i 0<30+5<3+5
58 53 57 mpbi 0+5<3+5
59 5cn 5
60 59 addlidi 0+5=5
61 cu2 23=8
62 5p3e8 5+3=8
63 3cn 3
64 59 63 addcomi 5+3=3+5
65 61 62 64 3eqtr2ri 3+5=23
66 58 60 65 3brtr3i 5<23
67 2re 2
68 1le2 12
69 4z 4
70 3lt4 3<4
71 55 17 70 ltleii 34
72 3z 3
73 72 eluz1i 43434
74 69 71 73 mpbir2an 43
75 leexp2a 212432324
76 67 68 74 75 mp3an 2324
77 8re 8
78 61 77 eqeltri 23
79 2nn 2
80 nnexpcl 24024
81 79 11 80 mp2an 24
82 81 nnrei 24
83 56 78 82 ltletri 5<2323245<24
84 66 76 83 mp2an 5<24
85 6re 6
86 85 82 remulcli 624
87 6pos 0<6
88 81 nngt0i 0<24
89 85 82 87 88 mulgt0ii 0<624
90 56 82 86 89 ltdiv1ii 5<245624<24624
91 84 90 mpbi 5624<24624
92 df-5 5=4+1
93 df-4 4=3+1
94 93 fveq2i 4!=3+1!
95 3nn0 30
96 facp1 303+1!=3!3+1
97 95 96 ax-mp 3+1!=3!3+1
98 sq2 22=4
99 98 93 eqtr2i 3+1=22
100 99 oveq2i 3!3+1=3!22
101 94 97 100 3eqtri 4!=3!22
102 101 oveq1i 4!22=3!2222
103 98 oveq2i 4!22=4!4
104 fac3 3!=6
105 6cn 6
106 104 105 eqeltri 3!
107 17 recni 4
108 98 107 eqeltri 22
109 106 108 108 mulassi 3!2222=3!2222
110 102 103 109 3eqtr3i 4!4=3!2222
111 2p2e4 2+2=4
112 111 oveq2i 22+2=24
113 2cn 2
114 2nn0 20
115 expadd 2202022+2=2222
116 113 114 114 115 mp3an 22+2=2222
117 112 116 eqtr3i 24=2222
118 117 oveq2i 3!24=3!2222
119 104 oveq1i 3!24=624
120 110 118 119 3eqtr2ri 624=4!4
121 92 120 oveq12i 5624=4+14!4
122 81 nncni 24
123 122 mullidi 124=24
124 123 oveq1i 124624=24624
125 81 nnne0i 240
126 122 125 dividi 2424=1
127 126 oveq2i 162424=161
128 ax-1cn 1
129 85 87 gt0ne0ii 60
130 128 105 122 122 129 125 divmuldivi 162424=124624
131 85 129 rereccli 16
132 131 recni 16
133 132 mulridi 161=16
134 127 130 133 3eqtr3i 124624=16
135 124 134 eqtr3i 24624=16
136 91 121 135 3brtr3i 4+14!4<16
137 rpexpcl A+4A4+
138 38 69 137 sylancl A01A4+
139 elrp A4+A40<A4
140 ltmul2 4+14!416A40<A44+14!4<16A44+14!4<A416
141 24 131 140 mp3an12 A40<A44+14!4<16A44+14!4<A416
142 139 141 sylbi A4+4+14!4<16A44+14!4<A416
143 138 142 syl A014+14!4<16A44+14!4<A416
144 136 143 mpbii A01A44+14!4<A416
145 16 recnd A01A4
146 divrec A4660A46=A416
147 105 129 146 mp3an23 A4A46=A416
148 145 147 syl A01A46=A416
149 144 148 breqtrrd A01A44+14!4<A46
150 14 26 29 52 149 lelttrd A01k4Fk<A46