Metamath Proof Explorer


Theorem ef01bndlem

Description: Lemma for sin01bnd and cos01bnd . (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Hypothesis ef01bnd.1 F = n 0 i A n n !
Assertion ef01bndlem A 0 1 k 4 F k < A 4 6

Proof

Step Hyp Ref Expression
1 ef01bnd.1 F = n 0 i A n n !
2 ax-icn i
3 0xr 0 *
4 1re 1
5 elioc2 0 * 1 A 0 1 A 0 < A A 1
6 3 4 5 mp2an A 0 1 A 0 < A A 1
7 6 simp1bi A 0 1 A
8 7 recnd A 0 1 A
9 mulcl i A i A
10 2 8 9 sylancr A 0 1 i A
11 4nn0 4 0
12 1 eftlcl i A 4 0 k 4 F k
13 10 11 12 sylancl A 0 1 k 4 F k
14 13 abscld A 0 1 k 4 F k
15 reexpcl A 4 0 A 4
16 7 11 15 sylancl A 0 1 A 4
17 4re 4
18 17 4 readdcli 4 + 1
19 faccl 4 0 4 !
20 11 19 ax-mp 4 !
21 4nn 4
22 20 21 nnmulcli 4 ! 4
23 nndivre 4 + 1 4 ! 4 4 + 1 4 ! 4
24 18 22 23 mp2an 4 + 1 4 ! 4
25 remulcl A 4 4 + 1 4 ! 4 A 4 4 + 1 4 ! 4
26 16 24 25 sylancl A 0 1 A 4 4 + 1 4 ! 4
27 6nn 6
28 nndivre A 4 6 A 4 6
29 16 27 28 sylancl A 0 1 A 4 6
30 eqid n 0 i A n n ! = n 0 i A n n !
31 eqid n 0 i A 4 4 ! 1 4 + 1 n = n 0 i A 4 4 ! 1 4 + 1 n
32 21 a1i A 0 1 4
33 absmul i A i A = i A
34 2 8 33 sylancr A 0 1 i A = i A
35 absi i = 1
36 35 oveq1i i A = 1 A
37 6 simp2bi A 0 1 0 < A
38 7 37 elrpd A 0 1 A +
39 rpre A + A
40 rpge0 A + 0 A
41 39 40 absidd A + A = A
42 38 41 syl A 0 1 A = A
43 42 oveq2d A 0 1 1 A = 1 A
44 36 43 syl5eq A 0 1 i A = 1 A
45 8 mulid2d A 0 1 1 A = A
46 34 44 45 3eqtrd A 0 1 i A = A
47 6 simp3bi A 0 1 A 1
48 46 47 eqbrtrd A 0 1 i A 1
49 1 30 31 32 10 48 eftlub A 0 1 k 4 F k i A 4 4 + 1 4 ! 4
50 46 oveq1d A 0 1 i A 4 = A 4
51 50 oveq1d A 0 1 i A 4 4 + 1 4 ! 4 = A 4 4 + 1 4 ! 4
52 49 51 breqtrd A 0 1 k 4 F k A 4 4 + 1 4 ! 4
53 3pos 0 < 3
54 0re 0
55 3re 3
56 5re 5
57 54 55 56 ltadd1i 0 < 3 0 + 5 < 3 + 5
58 53 57 mpbi 0 + 5 < 3 + 5
59 5cn 5
60 59 addid2i 0 + 5 = 5
61 cu2 2 3 = 8
62 5p3e8 5 + 3 = 8
63 3cn 3
64 59 63 addcomi 5 + 3 = 3 + 5
65 61 62 64 3eqtr2ri 3 + 5 = 2 3
66 58 60 65 3brtr3i 5 < 2 3
67 2re 2
68 1le2 1 2
69 4z 4
70 3lt4 3 < 4
71 55 17 70 ltleii 3 4
72 3z 3
73 72 eluz1i 4 3 4 3 4
74 69 71 73 mpbir2an 4 3
75 leexp2a 2 1 2 4 3 2 3 2 4
76 67 68 74 75 mp3an 2 3 2 4
77 8re 8
78 61 77 eqeltri 2 3
79 2nn 2
80 nnexpcl 2 4 0 2 4
81 79 11 80 mp2an 2 4
82 81 nnrei 2 4
83 56 78 82 ltletri 5 < 2 3 2 3 2 4 5 < 2 4
84 66 76 83 mp2an 5 < 2 4
85 6re 6
86 85 82 remulcli 6 2 4
87 6pos 0 < 6
88 81 nngt0i 0 < 2 4
89 85 82 87 88 mulgt0ii 0 < 6 2 4
90 56 82 86 89 ltdiv1ii 5 < 2 4 5 6 2 4 < 2 4 6 2 4
91 84 90 mpbi 5 6 2 4 < 2 4 6 2 4
92 df-5 5 = 4 + 1
93 df-4 4 = 3 + 1
94 93 fveq2i 4 ! = 3 + 1 !
95 3nn0 3 0
96 facp1 3 0 3 + 1 ! = 3 ! 3 + 1
97 95 96 ax-mp 3 + 1 ! = 3 ! 3 + 1
98 sq2 2 2 = 4
99 98 93 eqtr2i 3 + 1 = 2 2
100 99 oveq2i 3 ! 3 + 1 = 3 ! 2 2
101 94 97 100 3eqtri 4 ! = 3 ! 2 2
102 101 oveq1i 4 ! 2 2 = 3 ! 2 2 2 2
103 98 oveq2i 4 ! 2 2 = 4 ! 4
104 fac3 3 ! = 6
105 6cn 6
106 104 105 eqeltri 3 !
107 17 recni 4
108 98 107 eqeltri 2 2
109 106 108 108 mulassi 3 ! 2 2 2 2 = 3 ! 2 2 2 2
110 102 103 109 3eqtr3i 4 ! 4 = 3 ! 2 2 2 2
111 2p2e4 2 + 2 = 4
112 111 oveq2i 2 2 + 2 = 2 4
113 2cn 2
114 2nn0 2 0
115 expadd 2 2 0 2 0 2 2 + 2 = 2 2 2 2
116 113 114 114 115 mp3an 2 2 + 2 = 2 2 2 2
117 112 116 eqtr3i 2 4 = 2 2 2 2
118 117 oveq2i 3 ! 2 4 = 3 ! 2 2 2 2
119 104 oveq1i 3 ! 2 4 = 6 2 4
120 110 118 119 3eqtr2ri 6 2 4 = 4 ! 4
121 92 120 oveq12i 5 6 2 4 = 4 + 1 4 ! 4
122 81 nncni 2 4
123 122 mulid2i 1 2 4 = 2 4
124 123 oveq1i 1 2 4 6 2 4 = 2 4 6 2 4
125 81 nnne0i 2 4 0
126 122 125 dividi 2 4 2 4 = 1
127 126 oveq2i 1 6 2 4 2 4 = 1 6 1
128 ax-1cn 1
129 85 87 gt0ne0ii 6 0
130 128 105 122 122 129 125 divmuldivi 1 6 2 4 2 4 = 1 2 4 6 2 4
131 85 129 rereccli 1 6
132 131 recni 1 6
133 132 mulid1i 1 6 1 = 1 6
134 127 130 133 3eqtr3i 1 2 4 6 2 4 = 1 6
135 124 134 eqtr3i 2 4 6 2 4 = 1 6
136 91 121 135 3brtr3i 4 + 1 4 ! 4 < 1 6
137 rpexpcl A + 4 A 4 +
138 38 69 137 sylancl A 0 1 A 4 +
139 elrp A 4 + A 4 0 < A 4
140 ltmul2 4 + 1 4 ! 4 1 6 A 4 0 < A 4 4 + 1 4 ! 4 < 1 6 A 4 4 + 1 4 ! 4 < A 4 1 6
141 24 131 140 mp3an12 A 4 0 < A 4 4 + 1 4 ! 4 < 1 6 A 4 4 + 1 4 ! 4 < A 4 1 6
142 139 141 sylbi A 4 + 4 + 1 4 ! 4 < 1 6 A 4 4 + 1 4 ! 4 < A 4 1 6
143 138 142 syl A 0 1 4 + 1 4 ! 4 < 1 6 A 4 4 + 1 4 ! 4 < A 4 1 6
144 136 143 mpbii A 0 1 A 4 4 + 1 4 ! 4 < A 4 1 6
145 16 recnd A 0 1 A 4
146 divrec A 4 6 6 0 A 4 6 = A 4 1 6
147 105 129 146 mp3an23 A 4 A 4 6 = A 4 1 6
148 145 147 syl A 0 1 A 4 6 = A 4 1 6
149 144 148 breqtrrd A 0 1 A 4 4 + 1 4 ! 4 < A 4 6
150 14 26 29 52 149 lelttrd A 0 1 k 4 F k < A 4 6