Database
REAL AND COMPLEX NUMBERS
Elementary trigonometry
The exponential, sine, and cosine functions
ef01bndlem
Next ⟩
sin01bnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ef01bndlem
Description:
Lemma for
sin01bnd
and
cos01bnd
.
(Contributed by
Paul Chapman
, 19-Jan-2008)
Ref
Expression
Hypothesis
ef01bnd.1
⊢
F
=
n
∈
ℕ
0
⟼
i
A
n
n
!
Assertion
ef01bndlem
⊢
A
∈
0
1
→
∑
k
∈
ℤ
≥
4
F
k
<
A
4
6
Proof
Step
Hyp
Ref
Expression
1
ef01bnd.1
⊢
F
=
n
∈
ℕ
0
⟼
i
A
n
n
!
2
ax-icn
⊢
i
∈
ℂ
3
0xr
⊢
0
∈
ℝ
*
4
1re
⊢
1
∈
ℝ
5
elioc2
⊢
0
∈
ℝ
*
∧
1
∈
ℝ
→
A
∈
0
1
↔
A
∈
ℝ
∧
0
<
A
∧
A
≤
1
6
3
4
5
mp2an
⊢
A
∈
0
1
↔
A
∈
ℝ
∧
0
<
A
∧
A
≤
1
7
6
simp1bi
⊢
A
∈
0
1
→
A
∈
ℝ
8
7
recnd
⊢
A
∈
0
1
→
A
∈
ℂ
9
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
10
2
8
9
sylancr
⊢
A
∈
0
1
→
i
A
∈
ℂ
11
4nn0
⊢
4
∈
ℕ
0
12
1
eftlcl
⊢
i
A
∈
ℂ
∧
4
∈
ℕ
0
→
∑
k
∈
ℤ
≥
4
F
k
∈
ℂ
13
10
11
12
sylancl
⊢
A
∈
0
1
→
∑
k
∈
ℤ
≥
4
F
k
∈
ℂ
14
13
abscld
⊢
A
∈
0
1
→
∑
k
∈
ℤ
≥
4
F
k
∈
ℝ
15
reexpcl
⊢
A
∈
ℝ
∧
4
∈
ℕ
0
→
A
4
∈
ℝ
16
7
11
15
sylancl
⊢
A
∈
0
1
→
A
4
∈
ℝ
17
4re
⊢
4
∈
ℝ
18
17
4
readdcli
⊢
4
+
1
∈
ℝ
19
faccl
⊢
4
∈
ℕ
0
→
4
!
∈
ℕ
20
11
19
ax-mp
⊢
4
!
∈
ℕ
21
4nn
⊢
4
∈
ℕ
22
20
21
nnmulcli
⊢
4
!
⋅
4
∈
ℕ
23
nndivre
⊢
4
+
1
∈
ℝ
∧
4
!
⋅
4
∈
ℕ
→
4
+
1
4
!
⋅
4
∈
ℝ
24
18
22
23
mp2an
⊢
4
+
1
4
!
⋅
4
∈
ℝ
25
remulcl
⊢
A
4
∈
ℝ
∧
4
+
1
4
!
⋅
4
∈
ℝ
→
A
4
4
+
1
4
!
⋅
4
∈
ℝ
26
16
24
25
sylancl
⊢
A
∈
0
1
→
A
4
4
+
1
4
!
⋅
4
∈
ℝ
27
6nn
⊢
6
∈
ℕ
28
nndivre
⊢
A
4
∈
ℝ
∧
6
∈
ℕ
→
A
4
6
∈
ℝ
29
16
27
28
sylancl
⊢
A
∈
0
1
→
A
4
6
∈
ℝ
30
eqid
⊢
n
∈
ℕ
0
⟼
i
A
n
n
!
=
n
∈
ℕ
0
⟼
i
A
n
n
!
31
eqid
⊢
n
∈
ℕ
0
⟼
i
A
4
4
!
1
4
+
1
n
=
n
∈
ℕ
0
⟼
i
A
4
4
!
1
4
+
1
n
32
21
a1i
⊢
A
∈
0
1
→
4
∈
ℕ
33
absmul
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
=
i
A
34
2
8
33
sylancr
⊢
A
∈
0
1
→
i
A
=
i
A
35
absi
⊢
i
=
1
36
35
oveq1i
⊢
i
A
=
1
A
37
6
simp2bi
⊢
A
∈
0
1
→
0
<
A
38
7
37
elrpd
⊢
A
∈
0
1
→
A
∈
ℝ
+
39
rpre
⊢
A
∈
ℝ
+
→
A
∈
ℝ
40
rpge0
⊢
A
∈
ℝ
+
→
0
≤
A
41
39
40
absidd
⊢
A
∈
ℝ
+
→
A
=
A
42
38
41
syl
⊢
A
∈
0
1
→
A
=
A
43
42
oveq2d
⊢
A
∈
0
1
→
1
A
=
1
A
44
36
43
eqtrid
⊢
A
∈
0
1
→
i
A
=
1
A
45
8
mullidd
⊢
A
∈
0
1
→
1
A
=
A
46
34
44
45
3eqtrd
⊢
A
∈
0
1
→
i
A
=
A
47
6
simp3bi
⊢
A
∈
0
1
→
A
≤
1
48
46
47
eqbrtrd
⊢
A
∈
0
1
→
i
A
≤
1
49
1
30
31
32
10
48
eftlub
⊢
A
∈
0
1
→
∑
k
∈
ℤ
≥
4
F
k
≤
i
A
4
4
+
1
4
!
⋅
4
50
46
oveq1d
⊢
A
∈
0
1
→
i
A
4
=
A
4
51
50
oveq1d
⊢
A
∈
0
1
→
i
A
4
4
+
1
4
!
⋅
4
=
A
4
4
+
1
4
!
⋅
4
52
49
51
breqtrd
⊢
A
∈
0
1
→
∑
k
∈
ℤ
≥
4
F
k
≤
A
4
4
+
1
4
!
⋅
4
53
3pos
⊢
0
<
3
54
0re
⊢
0
∈
ℝ
55
3re
⊢
3
∈
ℝ
56
5re
⊢
5
∈
ℝ
57
54
55
56
ltadd1i
⊢
0
<
3
↔
0
+
5
<
3
+
5
58
53
57
mpbi
⊢
0
+
5
<
3
+
5
59
5cn
⊢
5
∈
ℂ
60
59
addlidi
⊢
0
+
5
=
5
61
cu2
⊢
2
3
=
8
62
5p3e8
⊢
5
+
3
=
8
63
3cn
⊢
3
∈
ℂ
64
59
63
addcomi
⊢
5
+
3
=
3
+
5
65
61
62
64
3eqtr2ri
⊢
3
+
5
=
2
3
66
58
60
65
3brtr3i
⊢
5
<
2
3
67
2re
⊢
2
∈
ℝ
68
1le2
⊢
1
≤
2
69
4z
⊢
4
∈
ℤ
70
3lt4
⊢
3
<
4
71
55
17
70
ltleii
⊢
3
≤
4
72
3z
⊢
3
∈
ℤ
73
72
eluz1i
⊢
4
∈
ℤ
≥
3
↔
4
∈
ℤ
∧
3
≤
4
74
69
71
73
mpbir2an
⊢
4
∈
ℤ
≥
3
75
leexp2a
⊢
2
∈
ℝ
∧
1
≤
2
∧
4
∈
ℤ
≥
3
→
2
3
≤
2
4
76
67
68
74
75
mp3an
⊢
2
3
≤
2
4
77
8re
⊢
8
∈
ℝ
78
61
77
eqeltri
⊢
2
3
∈
ℝ
79
2nn
⊢
2
∈
ℕ
80
nnexpcl
⊢
2
∈
ℕ
∧
4
∈
ℕ
0
→
2
4
∈
ℕ
81
79
11
80
mp2an
⊢
2
4
∈
ℕ
82
81
nnrei
⊢
2
4
∈
ℝ
83
56
78
82
ltletri
⊢
5
<
2
3
∧
2
3
≤
2
4
→
5
<
2
4
84
66
76
83
mp2an
⊢
5
<
2
4
85
6re
⊢
6
∈
ℝ
86
85
82
remulcli
⊢
6
2
4
∈
ℝ
87
6pos
⊢
0
<
6
88
81
nngt0i
⊢
0
<
2
4
89
85
82
87
88
mulgt0ii
⊢
0
<
6
2
4
90
56
82
86
89
ltdiv1ii
⊢
5
<
2
4
↔
5
6
2
4
<
2
4
6
2
4
91
84
90
mpbi
⊢
5
6
2
4
<
2
4
6
2
4
92
df-5
⊢
5
=
4
+
1
93
df-4
⊢
4
=
3
+
1
94
93
fveq2i
⊢
4
!
=
3
+
1
!
95
3nn0
⊢
3
∈
ℕ
0
96
facp1
⊢
3
∈
ℕ
0
→
3
+
1
!
=
3
!
3
+
1
97
95
96
ax-mp
⊢
3
+
1
!
=
3
!
3
+
1
98
sq2
⊢
2
2
=
4
99
98
93
eqtr2i
⊢
3
+
1
=
2
2
100
99
oveq2i
⊢
3
!
3
+
1
=
3
!
2
2
101
94
97
100
3eqtri
⊢
4
!
=
3
!
2
2
102
101
oveq1i
⊢
4
!
2
2
=
3
!
2
2
2
2
103
98
oveq2i
⊢
4
!
2
2
=
4
!
⋅
4
104
fac3
⊢
3
!
=
6
105
6cn
⊢
6
∈
ℂ
106
104
105
eqeltri
⊢
3
!
∈
ℂ
107
17
recni
⊢
4
∈
ℂ
108
98
107
eqeltri
⊢
2
2
∈
ℂ
109
106
108
108
mulassi
⊢
3
!
2
2
2
2
=
3
!
2
2
2
2
110
102
103
109
3eqtr3i
⊢
4
!
⋅
4
=
3
!
2
2
2
2
111
2p2e4
⊢
2
+
2
=
4
112
111
oveq2i
⊢
2
2
+
2
=
2
4
113
2cn
⊢
2
∈
ℂ
114
2nn0
⊢
2
∈
ℕ
0
115
expadd
⊢
2
∈
ℂ
∧
2
∈
ℕ
0
∧
2
∈
ℕ
0
→
2
2
+
2
=
2
2
2
2
116
113
114
114
115
mp3an
⊢
2
2
+
2
=
2
2
2
2
117
112
116
eqtr3i
⊢
2
4
=
2
2
2
2
118
117
oveq2i
⊢
3
!
2
4
=
3
!
2
2
2
2
119
104
oveq1i
⊢
3
!
2
4
=
6
2
4
120
110
118
119
3eqtr2ri
⊢
6
2
4
=
4
!
⋅
4
121
92
120
oveq12i
⊢
5
6
2
4
=
4
+
1
4
!
⋅
4
122
81
nncni
⊢
2
4
∈
ℂ
123
122
mullidi
⊢
1
2
4
=
2
4
124
123
oveq1i
⊢
1
2
4
6
2
4
=
2
4
6
2
4
125
81
nnne0i
⊢
2
4
≠
0
126
122
125
dividi
⊢
2
4
2
4
=
1
127
126
oveq2i
⊢
1
6
2
4
2
4
=
1
6
⋅
1
128
ax-1cn
⊢
1
∈
ℂ
129
85
87
gt0ne0ii
⊢
6
≠
0
130
128
105
122
122
129
125
divmuldivi
⊢
1
6
2
4
2
4
=
1
2
4
6
2
4
131
85
129
rereccli
⊢
1
6
∈
ℝ
132
131
recni
⊢
1
6
∈
ℂ
133
132
mulridi
⊢
1
6
⋅
1
=
1
6
134
127
130
133
3eqtr3i
⊢
1
2
4
6
2
4
=
1
6
135
124
134
eqtr3i
⊢
2
4
6
2
4
=
1
6
136
91
121
135
3brtr3i
⊢
4
+
1
4
!
⋅
4
<
1
6
137
rpexpcl
⊢
A
∈
ℝ
+
∧
4
∈
ℤ
→
A
4
∈
ℝ
+
138
38
69
137
sylancl
⊢
A
∈
0
1
→
A
4
∈
ℝ
+
139
elrp
⊢
A
4
∈
ℝ
+
↔
A
4
∈
ℝ
∧
0
<
A
4
140
ltmul2
⊢
4
+
1
4
!
⋅
4
∈
ℝ
∧
1
6
∈
ℝ
∧
A
4
∈
ℝ
∧
0
<
A
4
→
4
+
1
4
!
⋅
4
<
1
6
↔
A
4
4
+
1
4
!
⋅
4
<
A
4
1
6
141
24
131
140
mp3an12
⊢
A
4
∈
ℝ
∧
0
<
A
4
→
4
+
1
4
!
⋅
4
<
1
6
↔
A
4
4
+
1
4
!
⋅
4
<
A
4
1
6
142
139
141
sylbi
⊢
A
4
∈
ℝ
+
→
4
+
1
4
!
⋅
4
<
1
6
↔
A
4
4
+
1
4
!
⋅
4
<
A
4
1
6
143
138
142
syl
⊢
A
∈
0
1
→
4
+
1
4
!
⋅
4
<
1
6
↔
A
4
4
+
1
4
!
⋅
4
<
A
4
1
6
144
136
143
mpbii
⊢
A
∈
0
1
→
A
4
4
+
1
4
!
⋅
4
<
A
4
1
6
145
16
recnd
⊢
A
∈
0
1
→
A
4
∈
ℂ
146
divrec
⊢
A
4
∈
ℂ
∧
6
∈
ℂ
∧
6
≠
0
→
A
4
6
=
A
4
1
6
147
105
129
146
mp3an23
⊢
A
4
∈
ℂ
→
A
4
6
=
A
4
1
6
148
145
147
syl
⊢
A
∈
0
1
→
A
4
6
=
A
4
1
6
149
144
148
breqtrrd
⊢
A
∈
0
1
→
A
4
4
+
1
4
!
⋅
4
<
A
4
6
150
14
26
29
52
149
lelttrd
⊢
A
∈
0
1
→
∑
k
∈
ℤ
≥
4
F
k
<
A
4
6