Metamath Proof Explorer


Theorem efiatan2

Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion efiatan2 AdomarctaneiarctanA=1+iA1+A2

Proof

Step Hyp Ref Expression
1 ax-icn i
2 atancl AdomarctanarctanA
3 mulcl iarctanAiarctanA
4 1 2 3 sylancr AdomarctaniarctanA
5 efcl iarctanAeiarctanA
6 4 5 syl AdomarctaneiarctanA
7 ax-1cn 1
8 atandm2 AdomarctanA1iA01+iA0
9 8 simp1bi AdomarctanA
10 9 sqcld AdomarctanA2
11 addcl 1A21+A2
12 7 10 11 sylancr Adomarctan1+A2
13 12 sqrtcld Adomarctan1+A2
14 12 sqsqrtd Adomarctan1+A22=1+A2
15 atandm4 AdomarctanA1+A20
16 15 simprbi Adomarctan1+A20
17 14 16 eqnetrd Adomarctan1+A220
18 sqne0 1+A21+A2201+A20
19 13 18 syl Adomarctan1+A2201+A20
20 17 19 mpbid Adomarctan1+A20
21 6 13 20 divcan4d AdomarctaneiarctanA1+A21+A2=eiarctanA
22 halfcn 12
23 12 16 logcld Adomarctanlog1+A2
24 mulcl 12log1+A212log1+A2
25 22 23 24 sylancr Adomarctan12log1+A2
26 efadd iarctanA12log1+A2eiarctanA+12log1+A2=eiarctanAe12log1+A2
27 4 25 26 syl2anc AdomarctaneiarctanA+12log1+A2=eiarctanAe12log1+A2
28 2cn 2
29 28 a1i Adomarctan2
30 mulcl iAiA
31 1 9 30 sylancr AdomarctaniA
32 addcl 1iA1+iA
33 7 31 32 sylancr Adomarctan1+iA
34 8 simp3bi Adomarctan1+iA0
35 33 34 logcld Adomarctanlog1+iA
36 29 35 4 subdid Adomarctan2log1+iAiarctanA=2log1+iA2iarctanA
37 atanval AdomarctanarctanA=i2log1iAlog1+iA
38 37 oveq2d Adomarctan2iarctanA=2ii2log1iAlog1+iA
39 1 a1i Adomarctani
40 29 39 2 mulassd Adomarctan2iarctanA=2iarctanA
41 halfcl ii2
42 1 41 ax-mp i2
43 28 1 42 mulassi 2ii2=2ii2
44 28 1 42 mul12i 2ii2=i2i2
45 2ne0 20
46 1 28 45 divcan2i 2i2=i
47 46 oveq2i i2i2=ii
48 ixi ii=1
49 47 48 eqtri i2i2=1
50 43 44 49 3eqtri 2ii2=1
51 50 oveq1i 2ii2log1iAlog1+iA=-1log1iAlog1+iA
52 subcl 1iA1iA
53 7 31 52 sylancr Adomarctan1iA
54 8 simp2bi Adomarctan1iA0
55 53 54 logcld Adomarctanlog1iA
56 55 35 subcld Adomarctanlog1iAlog1+iA
57 56 mulm1d Adomarctan-1log1iAlog1+iA=log1iAlog1+iA
58 51 57 eqtrid Adomarctan2ii2log1iAlog1+iA=log1iAlog1+iA
59 2mulicn 2i
60 59 a1i Adomarctan2i
61 42 a1i Adomarctani2
62 60 61 56 mulassd Adomarctan2ii2log1iAlog1+iA=2ii2log1iAlog1+iA
63 55 35 negsubdi2d Adomarctanlog1iAlog1+iA=log1+iAlog1iA
64 58 62 63 3eqtr3d Adomarctan2ii2log1iAlog1+iA=log1+iAlog1iA
65 38 40 64 3eqtr3d Adomarctan2iarctanA=log1+iAlog1iA
66 65 oveq2d Adomarctan2log1+iA2iarctanA=2log1+iAlog1+iAlog1iA
67 mulcl 2log1+iA2log1+iA
68 28 35 67 sylancr Adomarctan2log1+iA
69 68 35 55 subsubd Adomarctan2log1+iAlog1+iAlog1iA=2log1+iA-log1+iA+log1iA
70 35 2timesd Adomarctan2log1+iA=log1+iA+log1+iA
71 35 35 70 mvrladdd Adomarctan2log1+iAlog1+iA=log1+iA
72 71 oveq1d Adomarctan2log1+iA-log1+iA+log1iA=log1+iA+log1iA
73 atanlogadd Adomarctanlog1+iA+log1iAranlog
74 logef log1+iA+log1iAranloglogelog1+iA+log1iA=log1+iA+log1iA
75 73 74 syl Adomarctanlogelog1+iA+log1iA=log1+iA+log1iA
76 efadd log1+iAlog1iAelog1+iA+log1iA=elog1+iAelog1iA
77 35 55 76 syl2anc Adomarctanelog1+iA+log1iA=elog1+iAelog1iA
78 eflog 1+iA1+iA0elog1+iA=1+iA
79 33 34 78 syl2anc Adomarctanelog1+iA=1+iA
80 eflog 1iA1iA0elog1iA=1iA
81 53 54 80 syl2anc Adomarctanelog1iA=1iA
82 79 81 oveq12d Adomarctanelog1+iAelog1iA=1+iA1iA
83 sq1 12=1
84 83 a1i Adomarctan12=1
85 sqmul iAiA2=i2A2
86 1 9 85 sylancr AdomarctaniA2=i2A2
87 i2 i2=1
88 87 oveq1i i2A2=-1A2
89 10 mulm1d Adomarctan-1A2=A2
90 88 89 eqtrid Adomarctani2A2=A2
91 86 90 eqtrd AdomarctaniA2=A2
92 84 91 oveq12d Adomarctan12iA2=1A2
93 subsq 1iA12iA2=1+iA1iA
94 7 31 93 sylancr Adomarctan12iA2=1+iA1iA
95 subneg 1A21A2=1+A2
96 7 10 95 sylancr Adomarctan1A2=1+A2
97 92 94 96 3eqtr3d Adomarctan1+iA1iA=1+A2
98 77 82 97 3eqtrd Adomarctanelog1+iA+log1iA=1+A2
99 98 fveq2d Adomarctanlogelog1+iA+log1iA=log1+A2
100 75 99 eqtr3d Adomarctanlog1+iA+log1iA=log1+A2
101 69 72 100 3eqtrd Adomarctan2log1+iAlog1+iAlog1iA=log1+A2
102 36 66 101 3eqtrd Adomarctan2log1+iAiarctanA=log1+A2
103 102 oveq1d Adomarctan2log1+iAiarctanA2=log1+A22
104 35 4 subcld Adomarctanlog1+iAiarctanA
105 45 a1i Adomarctan20
106 104 29 105 divcan3d Adomarctan2log1+iAiarctanA2=log1+iAiarctanA
107 23 29 105 divrec2d Adomarctanlog1+A22=12log1+A2
108 103 106 107 3eqtr3d Adomarctanlog1+iAiarctanA=12log1+A2
109 35 4 25 subaddd Adomarctanlog1+iAiarctanA=12log1+A2iarctanA+12log1+A2=log1+iA
110 108 109 mpbid AdomarctaniarctanA+12log1+A2=log1+iA
111 110 fveq2d AdomarctaneiarctanA+12log1+A2=elog1+iA
112 27 111 eqtr3d AdomarctaneiarctanAe12log1+A2=elog1+iA
113 22 a1i Adomarctan12
114 12 16 113 cxpefd Adomarctan1+A212=e12log1+A2
115 cxpsqrt 1+A21+A212=1+A2
116 12 115 syl Adomarctan1+A212=1+A2
117 114 116 eqtr3d Adomarctane12log1+A2=1+A2
118 117 oveq2d AdomarctaneiarctanAe12log1+A2=eiarctanA1+A2
119 112 118 79 3eqtr3d AdomarctaneiarctanA1+A2=1+iA
120 119 oveq1d AdomarctaneiarctanA1+A21+A2=1+iA1+A2
121 21 120 eqtr3d AdomarctaneiarctanA=1+iA1+A2