Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Inverse trigonometric functions
efiatan2
Next ⟩
2efiatan
Metamath Proof Explorer
Ascii
Unicode
Theorem
efiatan2
Description:
Value of the exponential of an artcangent.
(Contributed by
Mario Carneiro
, 3-Apr-2015)
Ref
Expression
Assertion
efiatan2
⊢
A
∈
dom
arctan
→
e
i
arctan
A
=
1
+
i
A
1
+
A
2
Proof
Step
Hyp
Ref
Expression
1
ax-icn
⊢
i
∈
ℂ
2
atancl
⊢
A
∈
dom
arctan
→
arctan
A
∈
ℂ
3
mulcl
⊢
i
∈
ℂ
∧
arctan
A
∈
ℂ
→
i
arctan
A
∈
ℂ
4
1
2
3
sylancr
⊢
A
∈
dom
arctan
→
i
arctan
A
∈
ℂ
5
efcl
⊢
i
arctan
A
∈
ℂ
→
e
i
arctan
A
∈
ℂ
6
4
5
syl
⊢
A
∈
dom
arctan
→
e
i
arctan
A
∈
ℂ
7
ax-1cn
⊢
1
∈
ℂ
8
atandm2
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
−
i
A
≠
0
∧
1
+
i
A
≠
0
9
8
simp1bi
⊢
A
∈
dom
arctan
→
A
∈
ℂ
10
9
sqcld
⊢
A
∈
dom
arctan
→
A
2
∈
ℂ
11
addcl
⊢
1
∈
ℂ
∧
A
2
∈
ℂ
→
1
+
A
2
∈
ℂ
12
7
10
11
sylancr
⊢
A
∈
dom
arctan
→
1
+
A
2
∈
ℂ
13
12
sqrtcld
⊢
A
∈
dom
arctan
→
1
+
A
2
∈
ℂ
14
12
sqsqrtd
⊢
A
∈
dom
arctan
→
1
+
A
2
2
=
1
+
A
2
15
atandm4
⊢
A
∈
dom
arctan
↔
A
∈
ℂ
∧
1
+
A
2
≠
0
16
15
simprbi
⊢
A
∈
dom
arctan
→
1
+
A
2
≠
0
17
14
16
eqnetrd
⊢
A
∈
dom
arctan
→
1
+
A
2
2
≠
0
18
sqne0
⊢
1
+
A
2
∈
ℂ
→
1
+
A
2
2
≠
0
↔
1
+
A
2
≠
0
19
13
18
syl
⊢
A
∈
dom
arctan
→
1
+
A
2
2
≠
0
↔
1
+
A
2
≠
0
20
17
19
mpbid
⊢
A
∈
dom
arctan
→
1
+
A
2
≠
0
21
6
13
20
divcan4d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
1
+
A
2
1
+
A
2
=
e
i
arctan
A
22
halfcn
⊢
1
2
∈
ℂ
23
12
16
logcld
⊢
A
∈
dom
arctan
→
log
1
+
A
2
∈
ℂ
24
mulcl
⊢
1
2
∈
ℂ
∧
log
1
+
A
2
∈
ℂ
→
1
2
log
1
+
A
2
∈
ℂ
25
22
23
24
sylancr
⊢
A
∈
dom
arctan
→
1
2
log
1
+
A
2
∈
ℂ
26
efadd
⊢
i
arctan
A
∈
ℂ
∧
1
2
log
1
+
A
2
∈
ℂ
→
e
i
arctan
A
+
1
2
log
1
+
A
2
=
e
i
arctan
A
e
1
2
log
1
+
A
2
27
4
25
26
syl2anc
⊢
A
∈
dom
arctan
→
e
i
arctan
A
+
1
2
log
1
+
A
2
=
e
i
arctan
A
e
1
2
log
1
+
A
2
28
2cn
⊢
2
∈
ℂ
29
28
a1i
⊢
A
∈
dom
arctan
→
2
∈
ℂ
30
mulcl
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
∈
ℂ
31
1
9
30
sylancr
⊢
A
∈
dom
arctan
→
i
A
∈
ℂ
32
addcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
+
i
A
∈
ℂ
33
7
31
32
sylancr
⊢
A
∈
dom
arctan
→
1
+
i
A
∈
ℂ
34
8
simp3bi
⊢
A
∈
dom
arctan
→
1
+
i
A
≠
0
35
33
34
logcld
⊢
A
∈
dom
arctan
→
log
1
+
i
A
∈
ℂ
36
29
35
4
subdid
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
i
arctan
A
=
2
log
1
+
i
A
−
2
i
arctan
A
37
atanval
⊢
A
∈
dom
arctan
→
arctan
A
=
i
2
log
1
−
i
A
−
log
1
+
i
A
38
37
oveq2d
⊢
A
∈
dom
arctan
→
2
i
arctan
A
=
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
39
1
a1i
⊢
A
∈
dom
arctan
→
i
∈
ℂ
40
29
39
2
mulassd
⊢
A
∈
dom
arctan
→
2
i
arctan
A
=
2
i
arctan
A
41
halfcl
⊢
i
∈
ℂ
→
i
2
∈
ℂ
42
1
41
ax-mp
⊢
i
2
∈
ℂ
43
28
1
42
mulassi
⊢
2
i
i
2
=
2
i
i
2
44
28
1
42
mul12i
⊢
2
i
i
2
=
i
2
i
2
45
2ne0
⊢
2
≠
0
46
1
28
45
divcan2i
⊢
2
i
2
=
i
47
46
oveq2i
⊢
i
2
i
2
=
i
i
48
ixi
⊢
i
i
=
−
1
49
47
48
eqtri
⊢
i
2
i
2
=
−
1
50
43
44
49
3eqtri
⊢
2
i
i
2
=
−
1
51
50
oveq1i
⊢
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
-1
log
1
−
i
A
−
log
1
+
i
A
52
subcl
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
−
i
A
∈
ℂ
53
7
31
52
sylancr
⊢
A
∈
dom
arctan
→
1
−
i
A
∈
ℂ
54
8
simp2bi
⊢
A
∈
dom
arctan
→
1
−
i
A
≠
0
55
53
54
logcld
⊢
A
∈
dom
arctan
→
log
1
−
i
A
∈
ℂ
56
55
35
subcld
⊢
A
∈
dom
arctan
→
log
1
−
i
A
−
log
1
+
i
A
∈
ℂ
57
56
mulm1d
⊢
A
∈
dom
arctan
→
-1
log
1
−
i
A
−
log
1
+
i
A
=
−
log
1
−
i
A
−
log
1
+
i
A
58
51
57
eqtrid
⊢
A
∈
dom
arctan
→
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
−
log
1
−
i
A
−
log
1
+
i
A
59
2mulicn
⊢
2
i
∈
ℂ
60
59
a1i
⊢
A
∈
dom
arctan
→
2
i
∈
ℂ
61
42
a1i
⊢
A
∈
dom
arctan
→
i
2
∈
ℂ
62
60
61
56
mulassd
⊢
A
∈
dom
arctan
→
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
63
55
35
negsubdi2d
⊢
A
∈
dom
arctan
→
−
log
1
−
i
A
−
log
1
+
i
A
=
log
1
+
i
A
−
log
1
−
i
A
64
58
62
63
3eqtr3d
⊢
A
∈
dom
arctan
→
2
i
i
2
log
1
−
i
A
−
log
1
+
i
A
=
log
1
+
i
A
−
log
1
−
i
A
65
38
40
64
3eqtr3d
⊢
A
∈
dom
arctan
→
2
i
arctan
A
=
log
1
+
i
A
−
log
1
−
i
A
66
65
oveq2d
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
2
i
arctan
A
=
2
log
1
+
i
A
−
log
1
+
i
A
−
log
1
−
i
A
67
mulcl
⊢
2
∈
ℂ
∧
log
1
+
i
A
∈
ℂ
→
2
log
1
+
i
A
∈
ℂ
68
28
35
67
sylancr
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
∈
ℂ
69
68
35
55
subsubd
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
log
1
+
i
A
−
log
1
−
i
A
=
2
log
1
+
i
A
-
log
1
+
i
A
+
log
1
−
i
A
70
35
2timesd
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
=
log
1
+
i
A
+
log
1
+
i
A
71
35
35
70
mvrladdd
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
log
1
+
i
A
=
log
1
+
i
A
72
71
oveq1d
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
-
log
1
+
i
A
+
log
1
−
i
A
=
log
1
+
i
A
+
log
1
−
i
A
73
atanlogadd
⊢
A
∈
dom
arctan
→
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
74
logef
⊢
log
1
+
i
A
+
log
1
−
i
A
∈
ran
log
→
log
e
log
1
+
i
A
+
log
1
−
i
A
=
log
1
+
i
A
+
log
1
−
i
A
75
73
74
syl
⊢
A
∈
dom
arctan
→
log
e
log
1
+
i
A
+
log
1
−
i
A
=
log
1
+
i
A
+
log
1
−
i
A
76
efadd
⊢
log
1
+
i
A
∈
ℂ
∧
log
1
−
i
A
∈
ℂ
→
e
log
1
+
i
A
+
log
1
−
i
A
=
e
log
1
+
i
A
e
log
1
−
i
A
77
35
55
76
syl2anc
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
+
log
1
−
i
A
=
e
log
1
+
i
A
e
log
1
−
i
A
78
eflog
⊢
1
+
i
A
∈
ℂ
∧
1
+
i
A
≠
0
→
e
log
1
+
i
A
=
1
+
i
A
79
33
34
78
syl2anc
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
=
1
+
i
A
80
eflog
⊢
1
−
i
A
∈
ℂ
∧
1
−
i
A
≠
0
→
e
log
1
−
i
A
=
1
−
i
A
81
53
54
80
syl2anc
⊢
A
∈
dom
arctan
→
e
log
1
−
i
A
=
1
−
i
A
82
79
81
oveq12d
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
e
log
1
−
i
A
=
1
+
i
A
1
−
i
A
83
sq1
⊢
1
2
=
1
84
83
a1i
⊢
A
∈
dom
arctan
→
1
2
=
1
85
sqmul
⊢
i
∈
ℂ
∧
A
∈
ℂ
→
i
A
2
=
i
2
A
2
86
1
9
85
sylancr
⊢
A
∈
dom
arctan
→
i
A
2
=
i
2
A
2
87
i2
⊢
i
2
=
−
1
88
87
oveq1i
⊢
i
2
A
2
=
-1
A
2
89
10
mulm1d
⊢
A
∈
dom
arctan
→
-1
A
2
=
−
A
2
90
88
89
eqtrid
⊢
A
∈
dom
arctan
→
i
2
A
2
=
−
A
2
91
86
90
eqtrd
⊢
A
∈
dom
arctan
→
i
A
2
=
−
A
2
92
84
91
oveq12d
⊢
A
∈
dom
arctan
→
1
2
−
i
A
2
=
1
−
−
A
2
93
subsq
⊢
1
∈
ℂ
∧
i
A
∈
ℂ
→
1
2
−
i
A
2
=
1
+
i
A
1
−
i
A
94
7
31
93
sylancr
⊢
A
∈
dom
arctan
→
1
2
−
i
A
2
=
1
+
i
A
1
−
i
A
95
subneg
⊢
1
∈
ℂ
∧
A
2
∈
ℂ
→
1
−
−
A
2
=
1
+
A
2
96
7
10
95
sylancr
⊢
A
∈
dom
arctan
→
1
−
−
A
2
=
1
+
A
2
97
92
94
96
3eqtr3d
⊢
A
∈
dom
arctan
→
1
+
i
A
1
−
i
A
=
1
+
A
2
98
77
82
97
3eqtrd
⊢
A
∈
dom
arctan
→
e
log
1
+
i
A
+
log
1
−
i
A
=
1
+
A
2
99
98
fveq2d
⊢
A
∈
dom
arctan
→
log
e
log
1
+
i
A
+
log
1
−
i
A
=
log
1
+
A
2
100
75
99
eqtr3d
⊢
A
∈
dom
arctan
→
log
1
+
i
A
+
log
1
−
i
A
=
log
1
+
A
2
101
69
72
100
3eqtrd
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
log
1
+
i
A
−
log
1
−
i
A
=
log
1
+
A
2
102
36
66
101
3eqtrd
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
i
arctan
A
=
log
1
+
A
2
103
102
oveq1d
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
i
arctan
A
2
=
log
1
+
A
2
2
104
35
4
subcld
⊢
A
∈
dom
arctan
→
log
1
+
i
A
−
i
arctan
A
∈
ℂ
105
45
a1i
⊢
A
∈
dom
arctan
→
2
≠
0
106
104
29
105
divcan3d
⊢
A
∈
dom
arctan
→
2
log
1
+
i
A
−
i
arctan
A
2
=
log
1
+
i
A
−
i
arctan
A
107
23
29
105
divrec2d
⊢
A
∈
dom
arctan
→
log
1
+
A
2
2
=
1
2
log
1
+
A
2
108
103
106
107
3eqtr3d
⊢
A
∈
dom
arctan
→
log
1
+
i
A
−
i
arctan
A
=
1
2
log
1
+
A
2
109
35
4
25
subaddd
⊢
A
∈
dom
arctan
→
log
1
+
i
A
−
i
arctan
A
=
1
2
log
1
+
A
2
↔
i
arctan
A
+
1
2
log
1
+
A
2
=
log
1
+
i
A
110
108
109
mpbid
⊢
A
∈
dom
arctan
→
i
arctan
A
+
1
2
log
1
+
A
2
=
log
1
+
i
A
111
110
fveq2d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
+
1
2
log
1
+
A
2
=
e
log
1
+
i
A
112
27
111
eqtr3d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
e
1
2
log
1
+
A
2
=
e
log
1
+
i
A
113
22
a1i
⊢
A
∈
dom
arctan
→
1
2
∈
ℂ
114
12
16
113
cxpefd
⊢
A
∈
dom
arctan
→
1
+
A
2
1
2
=
e
1
2
log
1
+
A
2
115
cxpsqrt
⊢
1
+
A
2
∈
ℂ
→
1
+
A
2
1
2
=
1
+
A
2
116
12
115
syl
⊢
A
∈
dom
arctan
→
1
+
A
2
1
2
=
1
+
A
2
117
114
116
eqtr3d
⊢
A
∈
dom
arctan
→
e
1
2
log
1
+
A
2
=
1
+
A
2
118
117
oveq2d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
e
1
2
log
1
+
A
2
=
e
i
arctan
A
1
+
A
2
119
112
118
79
3eqtr3d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
1
+
A
2
=
1
+
i
A
120
119
oveq1d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
1
+
A
2
1
+
A
2
=
1
+
i
A
1
+
A
2
121
21
120
eqtr3d
⊢
A
∈
dom
arctan
→
e
i
arctan
A
=
1
+
i
A
1
+
A
2