Metamath Proof Explorer


Theorem eflogeq

Description: Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion eflogeq ABB0eA=BnA=logB+i2πn

Proof

Step Hyp Ref Expression
1 efcl AeA
2 efne0 AeA0
3 1 2 logcld AlogeA
4 efsub AlogeAeAlogeA=eAelogeA
5 3 4 mpdan AeAlogeA=eAelogeA
6 eflog eAeA0elogeA=eA
7 1 2 6 syl2anc AelogeA=eA
8 7 oveq2d AeAelogeA=eAeA
9 1 2 dividd AeAeA=1
10 5 8 9 3eqtrd AeAlogeA=1
11 subcl AlogeAAlogeA
12 3 11 mpdan AAlogeA
13 efeq1 AlogeAeAlogeA=1AlogeAi2π
14 12 13 syl AeAlogeA=1AlogeAi2π
15 10 14 mpbid AAlogeAi2π
16 ax-icn i
17 2cn 2
18 picn π
19 17 18 mulcli 2π
20 16 19 mulcli i2π
21 20 a1i Ai2π
22 ine0 i0
23 2ne0 20
24 pire π
25 pipos 0<π
26 24 25 gt0ne0ii π0
27 17 18 23 26 mulne0i 2π0
28 16 19 22 27 mulne0i i2π0
29 28 a1i Ai2π0
30 12 21 29 divcan2d Ai2πAlogeAi2π=AlogeA
31 30 oveq2d AlogeA+i2πAlogeAi2π=logeA+A-logeA
32 pncan3 logeAAlogeA+A-logeA=A
33 3 32 mpancom AlogeA+A-logeA=A
34 31 33 eqtr2d AA=logeA+i2πAlogeAi2π
35 oveq2 n=AlogeAi2πi2πn=i2πAlogeAi2π
36 35 oveq2d n=AlogeAi2πlogeA+i2πn=logeA+i2πAlogeAi2π
37 36 rspceeqv AlogeAi2πA=logeA+i2πAlogeAi2πnA=logeA+i2πn
38 15 34 37 syl2anc AnA=logeA+i2πn
39 38 3ad2ant1 ABB0nA=logeA+i2πn
40 fveq2 eA=BlogeA=logB
41 40 oveq1d eA=BlogeA+i2πn=logB+i2πn
42 41 eqeq2d eA=BA=logeA+i2πnA=logB+i2πn
43 42 rexbidv eA=BnA=logeA+i2πnnA=logB+i2πn
44 39 43 syl5ibcom ABB0eA=BnA=logB+i2πn
45 logcl BB0logB
46 45 3adant1 ABB0logB
47 zcn nn
48 47 adantl ABB0nn
49 mulcl i2πni2πn
50 20 48 49 sylancr ABB0ni2πn
51 efadd logBi2πnelogB+i2πn=elogBei2πn
52 46 50 51 syl2an2r ABB0nelogB+i2πn=elogBei2πn
53 eflog BB0elogB=B
54 53 3adant1 ABB0elogB=B
55 ef2kpi nei2πn=1
56 54 55 oveqan12d ABB0nelogBei2πn=B1
57 simpl2 ABB0nB
58 57 mulridd ABB0nB1=B
59 52 56 58 3eqtrd ABB0nelogB+i2πn=B
60 fveqeq2 A=logB+i2πneA=BelogB+i2πn=B
61 59 60 syl5ibrcom ABB0nA=logB+i2πneA=B
62 61 rexlimdva ABB0nA=logB+i2πneA=B
63 44 62 impbid ABB0eA=BnA=logB+i2πn