Description: Solve an equation involving an exponential. (Contributed by Mario Carneiro, 23-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | eflogeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efcl | |
|
2 | efne0 | |
|
3 | 1 2 | logcld | |
4 | efsub | |
|
5 | 3 4 | mpdan | |
6 | eflog | |
|
7 | 1 2 6 | syl2anc | |
8 | 7 | oveq2d | |
9 | 1 2 | dividd | |
10 | 5 8 9 | 3eqtrd | |
11 | subcl | |
|
12 | 3 11 | mpdan | |
13 | efeq1 | |
|
14 | 12 13 | syl | |
15 | 10 14 | mpbid | |
16 | ax-icn | |
|
17 | 2cn | |
|
18 | picn | |
|
19 | 17 18 | mulcli | |
20 | 16 19 | mulcli | |
21 | 20 | a1i | |
22 | ine0 | |
|
23 | 2ne0 | |
|
24 | pire | |
|
25 | pipos | |
|
26 | 24 25 | gt0ne0ii | |
27 | 17 18 23 26 | mulne0i | |
28 | 16 19 22 27 | mulne0i | |
29 | 28 | a1i | |
30 | 12 21 29 | divcan2d | |
31 | 30 | oveq2d | |
32 | pncan3 | |
|
33 | 3 32 | mpancom | |
34 | 31 33 | eqtr2d | |
35 | oveq2 | |
|
36 | 35 | oveq2d | |
37 | 36 | rspceeqv | |
38 | 15 34 37 | syl2anc | |
39 | 38 | 3ad2ant1 | |
40 | fveq2 | |
|
41 | 40 | oveq1d | |
42 | 41 | eqeq2d | |
43 | 42 | rexbidv | |
44 | 39 43 | syl5ibcom | |
45 | logcl | |
|
46 | 45 | 3adant1 | |
47 | zcn | |
|
48 | 47 | adantl | |
49 | mulcl | |
|
50 | 20 48 49 | sylancr | |
51 | efadd | |
|
52 | 46 50 51 | syl2an2r | |
53 | eflog | |
|
54 | 53 | 3adant1 | |
55 | ef2kpi | |
|
56 | 54 55 | oveqan12d | |
57 | simpl2 | |
|
58 | 57 | mulridd | |
59 | 52 56 58 | 3eqtrd | |
60 | fveqeq2 | |
|
61 | 59 60 | syl5ibrcom | |
62 | 61 | rexlimdva | |
63 | 44 62 | impbid | |