Description: Membership in a closure. Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 22-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clscld.1 | |
|
Assertion | elcls | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | |
|
2 | 1 | cmclsopn | |
3 | 2 | 3adant3 | |
4 | 3 | adantr | |
5 | eldif | |
|
6 | 5 | biimpri | |
7 | 6 | 3ad2antl3 | |
8 | simpr | |
|
9 | 1 | sscls | |
10 | 8 9 | ssind | |
11 | dfin4 | |
|
12 | 10 11 | sseqtrdi | |
13 | reldisj | |
|
14 | 13 | adantl | |
15 | 12 14 | mpbird | |
16 | nne | |
|
17 | incom | |
|
18 | 17 | eqeq1i | |
19 | 16 18 | bitri | |
20 | 15 19 | sylibr | |
21 | 20 | 3adant3 | |
22 | 21 | adantr | |
23 | eleq2 | |
|
24 | ineq1 | |
|
25 | 24 | neeq1d | |
26 | 25 | notbid | |
27 | 23 26 | anbi12d | |
28 | 27 | rspcev | |
29 | 4 7 22 28 | syl12anc | |
30 | incom | |
|
31 | 30 | eqeq1i | |
32 | df-ne | |
|
33 | 32 | con2bii | |
34 | 31 33 | bitri | |
35 | 1 | opncld | |
36 | 35 | adantlr | |
37 | reldisj | |
|
38 | 37 | biimpa | |
39 | 38 | ad4ant24 | |
40 | 1 | clsss2 | |
41 | 36 39 40 | syl2an2r | |
42 | 41 | sseld | |
43 | eldifn | |
|
44 | 42 43 | syl6 | |
45 | 44 | con2d | |
46 | 34 45 | sylan2br | |
47 | 46 | exp31 | |
48 | 47 | com34 | |
49 | 48 | imp4a | |
50 | 49 | rexlimdv | |
51 | 50 | imp | |
52 | 51 | 3adantl3 | |
53 | 29 52 | impbida | |
54 | rexanali | |
|
55 | 53 54 | bitrdi | |
56 | 55 | con4bid | |