Metamath Proof Explorer


Theorem elcls

Description: Membership in a closure. Theorem 6.5(a) of Munkres p. 95. (Contributed by NM, 22-Feb-2007)

Ref Expression
Hypothesis clscld.1 X=J
Assertion elcls JTopSXPXPclsJSxJPxxS

Proof

Step Hyp Ref Expression
1 clscld.1 X=J
2 1 cmclsopn JTopSXXclsJSJ
3 2 3adant3 JTopSXPXXclsJSJ
4 3 adantr JTopSXPX¬PclsJSXclsJSJ
5 eldif PXclsJSPX¬PclsJS
6 5 biimpri PX¬PclsJSPXclsJS
7 6 3ad2antl3 JTopSXPX¬PclsJSPXclsJS
8 simpr JTopSXSX
9 1 sscls JTopSXSclsJS
10 8 9 ssind JTopSXSXclsJS
11 dfin4 XclsJS=XXclsJS
12 10 11 sseqtrdi JTopSXSXXclsJS
13 reldisj SXSXclsJS=SXXclsJS
14 13 adantl JTopSXSXclsJS=SXXclsJS
15 12 14 mpbird JTopSXSXclsJS=
16 nne ¬XclsJSSXclsJSS=
17 incom XclsJSS=SXclsJS
18 17 eqeq1i XclsJSS=SXclsJS=
19 16 18 bitri ¬XclsJSSSXclsJS=
20 15 19 sylibr JTopSX¬XclsJSS
21 20 3adant3 JTopSXPX¬XclsJSS
22 21 adantr JTopSXPX¬PclsJS¬XclsJSS
23 eleq2 x=XclsJSPxPXclsJS
24 ineq1 x=XclsJSxS=XclsJSS
25 24 neeq1d x=XclsJSxSXclsJSS
26 25 notbid x=XclsJS¬xS¬XclsJSS
27 23 26 anbi12d x=XclsJSPx¬xSPXclsJS¬XclsJSS
28 27 rspcev XclsJSJPXclsJS¬XclsJSSxJPx¬xS
29 4 7 22 28 syl12anc JTopSXPX¬PclsJSxJPx¬xS
30 incom Sx=xS
31 30 eqeq1i Sx=xS=
32 df-ne xS¬xS=
33 32 con2bii xS=¬xS
34 31 33 bitri Sx=¬xS
35 1 opncld JTopxJXxClsdJ
36 35 adantlr JTopSXxJXxClsdJ
37 reldisj SXSx=SXx
38 37 biimpa SXSx=SXx
39 38 ad4ant24 JTopSXxJSx=SXx
40 1 clsss2 XxClsdJSXxclsJSXx
41 36 39 40 syl2an2r JTopSXxJSx=clsJSXx
42 41 sseld JTopSXxJSx=PclsJSPXx
43 eldifn PXx¬Px
44 42 43 syl6 JTopSXxJSx=PclsJS¬Px
45 44 con2d JTopSXxJSx=Px¬PclsJS
46 34 45 sylan2br JTopSXxJ¬xSPx¬PclsJS
47 46 exp31 JTopSXxJ¬xSPx¬PclsJS
48 47 com34 JTopSXxJPx¬xS¬PclsJS
49 48 imp4a JTopSXxJPx¬xS¬PclsJS
50 49 rexlimdv JTopSXxJPx¬xS¬PclsJS
51 50 imp JTopSXxJPx¬xS¬PclsJS
52 51 3adantl3 JTopSXPXxJPx¬xS¬PclsJS
53 29 52 impbida JTopSXPX¬PclsJSxJPx¬xS
54 rexanali xJPx¬xS¬xJPxxS
55 53 54 bitrdi JTopSXPX¬PclsJS¬xJPxxS
56 55 con4bid JTopSXPXPclsJSxJPxxS