| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funcestrcsetc.e |
|
| 2 |
|
funcestrcsetc.s |
|
| 3 |
|
funcestrcsetc.b |
|
| 4 |
|
funcestrcsetc.c |
|
| 5 |
|
funcestrcsetc.u |
|
| 6 |
|
funcestrcsetc.f |
|
| 7 |
|
funcestrcsetc.g |
|
| 8 |
|
equivestrcsetc.i |
|
| 9 |
1 2 3 4 5 6 7
|
fthestrcsetc |
|
| 10 |
1 2 3 4 5 6 7
|
fullestrcsetc |
|
| 11 |
2 5
|
setcbas |
|
| 12 |
4 11
|
eqtr4id |
|
| 13 |
12
|
eleq2d |
|
| 14 |
|
eqid |
|
| 15 |
14 5 8
|
1strwunbndx |
|
| 16 |
15
|
ex |
|
| 17 |
13 16
|
sylbid |
|
| 18 |
17
|
imp |
|
| 19 |
1 5
|
estrcbas |
|
| 20 |
19
|
adantr |
|
| 21 |
3 20
|
eqtr4id |
|
| 22 |
18 21
|
eleqtrrd |
|
| 23 |
|
fveq2 |
|
| 24 |
23
|
f1oeq3d |
|
| 25 |
24
|
exbidv |
|
| 26 |
25
|
adantl |
|
| 27 |
|
f1oi |
|
| 28 |
1 2 3 4 5 6
|
funcestrcsetclem1 |
|
| 29 |
22 28
|
syldan |
|
| 30 |
14
|
1strbas |
|
| 31 |
30
|
adantl |
|
| 32 |
29 31
|
eqtr4d |
|
| 33 |
32
|
f1oeq3d |
|
| 34 |
27 33
|
mpbiri |
|
| 35 |
|
resiexg |
|
| 36 |
35
|
elv |
|
| 37 |
|
f1oeq1 |
|
| 38 |
36 37
|
spcev |
|
| 39 |
34 38
|
syl |
|
| 40 |
22 26 39
|
rspcedvd |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
9 10 41
|
3jca |
|