Metamath Proof Explorer


Theorem equivestrcsetc

Description: The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of Adamek p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of Adamek p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020)

Ref Expression
Hypotheses funcestrcsetc.e E=ExtStrCatU
funcestrcsetc.s S=SetCatU
funcestrcsetc.b B=BaseE
funcestrcsetc.c C=BaseS
funcestrcsetc.u φUWUni
funcestrcsetc.f φF=xBBasex
funcestrcsetc.g φG=xB,yBIBaseyBasex
equivestrcsetc.i φBasendxU
Assertion equivestrcsetc φFEFaithSGFEFullSGbCaBii:b1-1 ontoFa

Proof

Step Hyp Ref Expression
1 funcestrcsetc.e E=ExtStrCatU
2 funcestrcsetc.s S=SetCatU
3 funcestrcsetc.b B=BaseE
4 funcestrcsetc.c C=BaseS
5 funcestrcsetc.u φUWUni
6 funcestrcsetc.f φF=xBBasex
7 funcestrcsetc.g φG=xB,yBIBaseyBasex
8 equivestrcsetc.i φBasendxU
9 1 2 3 4 5 6 7 fthestrcsetc φFEFaithSG
10 1 2 3 4 5 6 7 fullestrcsetc φFEFullSG
11 2 5 setcbas φU=BaseS
12 4 11 eqtr4id φC=U
13 12 eleq2d φbCbU
14 eqid Basendxb=Basendxb
15 14 5 8 1strwunbndx φbUBasendxbU
16 15 ex φbUBasendxbU
17 13 16 sylbid φbCBasendxbU
18 17 imp φbCBasendxbU
19 1 5 estrcbas φU=BaseE
20 19 adantr φbCU=BaseE
21 3 20 eqtr4id φbCB=U
22 18 21 eleqtrrd φbCBasendxbB
23 fveq2 a=BasendxbFa=FBasendxb
24 23 f1oeq3d a=Basendxbi:b1-1 ontoFai:b1-1 ontoFBasendxb
25 24 exbidv a=Basendxbii:b1-1 ontoFaii:b1-1 ontoFBasendxb
26 25 adantl φbCa=Basendxbii:b1-1 ontoFaii:b1-1 ontoFBasendxb
27 f1oi Ib:b1-1 ontob
28 1 2 3 4 5 6 funcestrcsetclem1 φBasendxbBFBasendxb=BaseBasendxb
29 22 28 syldan φbCFBasendxb=BaseBasendxb
30 14 1strbas bCb=BaseBasendxb
31 30 adantl φbCb=BaseBasendxb
32 29 31 eqtr4d φbCFBasendxb=b
33 32 f1oeq3d φbCIb:b1-1 ontoFBasendxbIb:b1-1 ontob
34 27 33 mpbiri φbCIb:b1-1 ontoFBasendxb
35 resiexg bVIbV
36 35 elv IbV
37 f1oeq1 i=Ibi:b1-1 ontoFBasendxbIb:b1-1 ontoFBasendxb
38 36 37 spcev Ib:b1-1 ontoFBasendxbii:b1-1 ontoFBasendxb
39 34 38 syl φbCii:b1-1 ontoFBasendxb
40 22 26 39 rspcedvd φbCaBii:b1-1 ontoFa
41 40 ralrimiva φbCaBii:b1-1 ontoFa
42 9 10 41 3jca φFEFaithSGFEFullSGbCaBii:b1-1 ontoFa