| Step |
Hyp |
Ref |
Expression |
| 1 |
|
erdsze2.r |
|
| 2 |
|
erdsze2.s |
|
| 3 |
|
erdsze2.f |
|
| 4 |
|
erdsze2.a |
|
| 5 |
|
erdsze2lem.n |
|
| 6 |
|
erdsze2lem.l |
|
| 7 |
|
nnm1nn0 |
|
| 8 |
1 7
|
syl |
|
| 9 |
|
nnm1nn0 |
|
| 10 |
2 9
|
syl |
|
| 11 |
8 10
|
nn0mulcld |
|
| 12 |
5 11
|
eqeltrid |
|
| 13 |
|
peano2nn0 |
|
| 14 |
|
hashfz1 |
|
| 15 |
12 13 14
|
3syl |
|
| 16 |
15
|
adantr |
|
| 17 |
6
|
adantr |
|
| 18 |
|
hashcl |
|
| 19 |
|
nn0ltp1le |
|
| 20 |
12 18 19
|
syl2an |
|
| 21 |
17 20
|
mpbid |
|
| 22 |
16 21
|
eqbrtrd |
|
| 23 |
|
fzfid |
|
| 24 |
|
simpr |
|
| 25 |
|
hashdom |
|
| 26 |
23 24 25
|
syl2anc |
|
| 27 |
22 26
|
mpbid |
|
| 28 |
|
simpr |
|
| 29 |
|
fzfid |
|
| 30 |
|
isinffi |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
|
reex |
|
| 33 |
|
ssexg |
|
| 34 |
4 32 33
|
sylancl |
|
| 35 |
34
|
adantr |
|
| 36 |
|
brdomg |
|
| 37 |
35 36
|
syl |
|
| 38 |
31 37
|
mpbird |
|
| 39 |
27 38
|
pm2.61dan |
|
| 40 |
|
domeng |
|
| 41 |
34 40
|
syl |
|
| 42 |
39 41
|
mpbid |
|
| 43 |
|
simprr |
|
| 44 |
4
|
adantr |
|
| 45 |
43 44
|
sstrd |
|
| 46 |
|
ltso |
|
| 47 |
|
soss |
|
| 48 |
45 46 47
|
mpisyl |
|
| 49 |
|
fzfid |
|
| 50 |
|
simprl |
|
| 51 |
|
enfi |
|
| 52 |
50 51
|
syl |
|
| 53 |
49 52
|
mpbid |
|
| 54 |
|
fz1iso |
|
| 55 |
48 53 54
|
syl2anc |
|
| 56 |
|
isof1o |
|
| 57 |
56
|
adantl |
|
| 58 |
|
hashen |
|
| 59 |
49 53 58
|
syl2anc |
|
| 60 |
50 59
|
mpbird |
|
| 61 |
15
|
adantr |
|
| 62 |
60 61
|
eqtr3d |
|
| 63 |
62
|
adantr |
|
| 64 |
63
|
oveq2d |
|
| 65 |
64
|
f1oeq2d |
|
| 66 |
57 65
|
mpbid |
|
| 67 |
|
f1of1 |
|
| 68 |
66 67
|
syl |
|
| 69 |
|
simplrr |
|
| 70 |
|
f1ss |
|
| 71 |
68 69 70
|
syl2anc |
|
| 72 |
|
simpr |
|
| 73 |
|
f1ofo |
|
| 74 |
|
forn |
|
| 75 |
|
isoeq5 |
|
| 76 |
57 73 74 75
|
4syl |
|
| 77 |
72 76
|
mpbird |
|
| 78 |
|
isoeq4 |
|
| 79 |
64 78
|
syl |
|
| 80 |
77 79
|
mpbid |
|
| 81 |
71 80
|
jca |
|
| 82 |
81
|
ex |
|
| 83 |
82
|
eximdv |
|
| 84 |
55 83
|
mpd |
|
| 85 |
42 84
|
exlimddv |
|