Metamath Proof Explorer


Theorem erdsze2lem1

Description: Lemma for erdsze2 . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze2.r φR
erdsze2.s φS
erdsze2.f φF:A1-1
erdsze2.a φA
erdsze2lem.n N=R1S1
erdsze2lem.l φN<A
Assertion erdsze2lem1 φff:1N+11-1AfIsom<,<1N+1ranf

Proof

Step Hyp Ref Expression
1 erdsze2.r φR
2 erdsze2.s φS
3 erdsze2.f φF:A1-1
4 erdsze2.a φA
5 erdsze2lem.n N=R1S1
6 erdsze2lem.l φN<A
7 nnm1nn0 RR10
8 1 7 syl φR10
9 nnm1nn0 SS10
10 2 9 syl φS10
11 8 10 nn0mulcld φR1S10
12 5 11 eqeltrid φN0
13 peano2nn0 N0N+10
14 hashfz1 N+101N+1=N+1
15 12 13 14 3syl φ1N+1=N+1
16 15 adantr φAFin1N+1=N+1
17 6 adantr φAFinN<A
18 hashcl AFinA0
19 nn0ltp1le N0A0N<AN+1A
20 12 18 19 syl2an φAFinN<AN+1A
21 17 20 mpbid φAFinN+1A
22 16 21 eqbrtrd φAFin1N+1A
23 fzfid φAFin1N+1Fin
24 simpr φAFinAFin
25 hashdom 1N+1FinAFin1N+1A1N+1A
26 23 24 25 syl2anc φAFin1N+1A1N+1A
27 22 26 mpbid φAFin1N+1A
28 simpr φ¬AFin¬AFin
29 fzfid φ¬AFin1N+1Fin
30 isinffi ¬AFin1N+1Finff:1N+11-1A
31 28 29 30 syl2anc φ¬AFinff:1N+11-1A
32 reex V
33 ssexg AVAV
34 4 32 33 sylancl φAV
35 34 adantr φ¬AFinAV
36 brdomg AV1N+1Aff:1N+11-1A
37 35 36 syl φ¬AFin1N+1Aff:1N+11-1A
38 31 37 mpbird φ¬AFin1N+1A
39 27 38 pm2.61dan φ1N+1A
40 domeng AV1N+1As1N+1ssA
41 34 40 syl φ1N+1As1N+1ssA
42 39 41 mpbid φs1N+1ssA
43 simprr φ1N+1ssAsA
44 4 adantr φ1N+1ssAA
45 43 44 sstrd φ1N+1ssAs
46 ltso <Or
47 soss s<Or<Ors
48 45 46 47 mpisyl φ1N+1ssA<Ors
49 fzfid φ1N+1ssA1N+1Fin
50 simprl φ1N+1ssA1N+1s
51 enfi 1N+1s1N+1FinsFin
52 50 51 syl φ1N+1ssA1N+1FinsFin
53 49 52 mpbid φ1N+1ssAsFin
54 fz1iso <OrssFinffIsom<,<1ss
55 48 53 54 syl2anc φ1N+1ssAffIsom<,<1ss
56 isof1o fIsom<,<1ssf:1s1-1 ontos
57 56 adantl φ1N+1ssAfIsom<,<1ssf:1s1-1 ontos
58 hashen 1N+1FinsFin1N+1=s1N+1s
59 49 53 58 syl2anc φ1N+1ssA1N+1=s1N+1s
60 50 59 mpbird φ1N+1ssA1N+1=s
61 15 adantr φ1N+1ssA1N+1=N+1
62 60 61 eqtr3d φ1N+1ssAs=N+1
63 62 adantr φ1N+1ssAfIsom<,<1sss=N+1
64 63 oveq2d φ1N+1ssAfIsom<,<1ss1s=1N+1
65 64 f1oeq2d φ1N+1ssAfIsom<,<1ssf:1s1-1 ontosf:1N+11-1 ontos
66 57 65 mpbid φ1N+1ssAfIsom<,<1ssf:1N+11-1 ontos
67 f1of1 f:1N+11-1 ontosf:1N+11-1s
68 66 67 syl φ1N+1ssAfIsom<,<1ssf:1N+11-1s
69 simplrr φ1N+1ssAfIsom<,<1sssA
70 f1ss f:1N+11-1ssAf:1N+11-1A
71 68 69 70 syl2anc φ1N+1ssAfIsom<,<1ssf:1N+11-1A
72 simpr φ1N+1ssAfIsom<,<1ssfIsom<,<1ss
73 f1ofo f:1s1-1 ontosf:1sontos
74 forn f:1sontosranf=s
75 isoeq5 ranf=sfIsom<,<1sranffIsom<,<1ss
76 57 73 74 75 4syl φ1N+1ssAfIsom<,<1ssfIsom<,<1sranffIsom<,<1ss
77 72 76 mpbird φ1N+1ssAfIsom<,<1ssfIsom<,<1sranf
78 isoeq4 1s=1N+1fIsom<,<1sranffIsom<,<1N+1ranf
79 64 78 syl φ1N+1ssAfIsom<,<1ssfIsom<,<1sranffIsom<,<1N+1ranf
80 77 79 mpbid φ1N+1ssAfIsom<,<1ssfIsom<,<1N+1ranf
81 71 80 jca φ1N+1ssAfIsom<,<1ssf:1N+11-1AfIsom<,<1N+1ranf
82 81 ex φ1N+1ssAfIsom<,<1ssf:1N+11-1AfIsom<,<1N+1ranf
83 82 eximdv φ1N+1ssAffIsom<,<1ssff:1N+11-1AfIsom<,<1N+1ranf
84 55 83 mpd φ1N+1ssAff:1N+11-1AfIsom<,<1N+1ranf
85 42 84 exlimddv φff:1N+11-1AfIsom<,<1N+1ranf