Metamath Proof Explorer


Theorem erdsze2lem1

Description: Lemma for erdsze2 . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze2.r φ R
erdsze2.s φ S
erdsze2.f φ F : A 1-1
erdsze2.a φ A
erdsze2lem.n N = R 1 S 1
erdsze2lem.l φ N < A
Assertion erdsze2lem1 φ f f : 1 N + 1 1-1 A f Isom < , < 1 N + 1 ran f

Proof

Step Hyp Ref Expression
1 erdsze2.r φ R
2 erdsze2.s φ S
3 erdsze2.f φ F : A 1-1
4 erdsze2.a φ A
5 erdsze2lem.n N = R 1 S 1
6 erdsze2lem.l φ N < A
7 nnm1nn0 R R 1 0
8 1 7 syl φ R 1 0
9 nnm1nn0 S S 1 0
10 2 9 syl φ S 1 0
11 8 10 nn0mulcld φ R 1 S 1 0
12 5 11 eqeltrid φ N 0
13 peano2nn0 N 0 N + 1 0
14 hashfz1 N + 1 0 1 N + 1 = N + 1
15 12 13 14 3syl φ 1 N + 1 = N + 1
16 15 adantr φ A Fin 1 N + 1 = N + 1
17 6 adantr φ A Fin N < A
18 hashcl A Fin A 0
19 nn0ltp1le N 0 A 0 N < A N + 1 A
20 12 18 19 syl2an φ A Fin N < A N + 1 A
21 17 20 mpbid φ A Fin N + 1 A
22 16 21 eqbrtrd φ A Fin 1 N + 1 A
23 fzfid φ A Fin 1 N + 1 Fin
24 simpr φ A Fin A Fin
25 hashdom 1 N + 1 Fin A Fin 1 N + 1 A 1 N + 1 A
26 23 24 25 syl2anc φ A Fin 1 N + 1 A 1 N + 1 A
27 22 26 mpbid φ A Fin 1 N + 1 A
28 simpr φ ¬ A Fin ¬ A Fin
29 fzfid φ ¬ A Fin 1 N + 1 Fin
30 isinffi ¬ A Fin 1 N + 1 Fin f f : 1 N + 1 1-1 A
31 28 29 30 syl2anc φ ¬ A Fin f f : 1 N + 1 1-1 A
32 reex V
33 ssexg A V A V
34 4 32 33 sylancl φ A V
35 34 adantr φ ¬ A Fin A V
36 brdomg A V 1 N + 1 A f f : 1 N + 1 1-1 A
37 35 36 syl φ ¬ A Fin 1 N + 1 A f f : 1 N + 1 1-1 A
38 31 37 mpbird φ ¬ A Fin 1 N + 1 A
39 27 38 pm2.61dan φ 1 N + 1 A
40 domeng A V 1 N + 1 A s 1 N + 1 s s A
41 34 40 syl φ 1 N + 1 A s 1 N + 1 s s A
42 39 41 mpbid φ s 1 N + 1 s s A
43 simprr φ 1 N + 1 s s A s A
44 4 adantr φ 1 N + 1 s s A A
45 43 44 sstrd φ 1 N + 1 s s A s
46 ltso < Or
47 soss s < Or < Or s
48 45 46 47 mpisyl φ 1 N + 1 s s A < Or s
49 fzfid φ 1 N + 1 s s A 1 N + 1 Fin
50 simprl φ 1 N + 1 s s A 1 N + 1 s
51 enfi 1 N + 1 s 1 N + 1 Fin s Fin
52 50 51 syl φ 1 N + 1 s s A 1 N + 1 Fin s Fin
53 49 52 mpbid φ 1 N + 1 s s A s Fin
54 fz1iso < Or s s Fin f f Isom < , < 1 s s
55 48 53 54 syl2anc φ 1 N + 1 s s A f f Isom < , < 1 s s
56 isof1o f Isom < , < 1 s s f : 1 s 1-1 onto s
57 56 adantl φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 s 1-1 onto s
58 hashen 1 N + 1 Fin s Fin 1 N + 1 = s 1 N + 1 s
59 49 53 58 syl2anc φ 1 N + 1 s s A 1 N + 1 = s 1 N + 1 s
60 50 59 mpbird φ 1 N + 1 s s A 1 N + 1 = s
61 15 adantr φ 1 N + 1 s s A 1 N + 1 = N + 1
62 60 61 eqtr3d φ 1 N + 1 s s A s = N + 1
63 62 adantr φ 1 N + 1 s s A f Isom < , < 1 s s s = N + 1
64 63 oveq2d φ 1 N + 1 s s A f Isom < , < 1 s s 1 s = 1 N + 1
65 64 f1oeq2d φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 s 1-1 onto s f : 1 N + 1 1-1 onto s
66 57 65 mpbid φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 N + 1 1-1 onto s
67 f1of1 f : 1 N + 1 1-1 onto s f : 1 N + 1 1-1 s
68 66 67 syl φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 N + 1 1-1 s
69 simplrr φ 1 N + 1 s s A f Isom < , < 1 s s s A
70 f1ss f : 1 N + 1 1-1 s s A f : 1 N + 1 1-1 A
71 68 69 70 syl2anc φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 N + 1 1-1 A
72 simpr φ 1 N + 1 s s A f Isom < , < 1 s s f Isom < , < 1 s s
73 f1ofo f : 1 s 1-1 onto s f : 1 s onto s
74 forn f : 1 s onto s ran f = s
75 isoeq5 ran f = s f Isom < , < 1 s ran f f Isom < , < 1 s s
76 57 73 74 75 4syl φ 1 N + 1 s s A f Isom < , < 1 s s f Isom < , < 1 s ran f f Isom < , < 1 s s
77 72 76 mpbird φ 1 N + 1 s s A f Isom < , < 1 s s f Isom < , < 1 s ran f
78 isoeq4 1 s = 1 N + 1 f Isom < , < 1 s ran f f Isom < , < 1 N + 1 ran f
79 64 78 syl φ 1 N + 1 s s A f Isom < , < 1 s s f Isom < , < 1 s ran f f Isom < , < 1 N + 1 ran f
80 77 79 mpbid φ 1 N + 1 s s A f Isom < , < 1 s s f Isom < , < 1 N + 1 ran f
81 71 80 jca φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 N + 1 1-1 A f Isom < , < 1 N + 1 ran f
82 81 ex φ 1 N + 1 s s A f Isom < , < 1 s s f : 1 N + 1 1-1 A f Isom < , < 1 N + 1 ran f
83 82 eximdv φ 1 N + 1 s s A f f Isom < , < 1 s s f f : 1 N + 1 1-1 A f Isom < , < 1 N + 1 ran f
84 55 83 mpd φ 1 N + 1 s s A f f : 1 N + 1 1-1 A f Isom < , < 1 N + 1 ran f
85 42 84 exlimddv φ f f : 1 N + 1 1-1 A f Isom < , < 1 N + 1 ran f