Metamath Proof Explorer


Theorem esplyfval0

Description: The 0 -th elementary symmetric polynomial is the constant 1 . (Contributed by Thierry Arnoux, 15-Feb-2026)

Ref Expression
Hypotheses esplyfval0.i φ I V
esplyfval0.r φ R Ring
esplyfval0.0 U = 1 I mPoly R
Assertion esplyfval0 Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` 0 ) = U ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyfval0.i φ I V
2 esplyfval0.r φ R Ring
3 esplyfval0.0 U = 1 I mPoly R
4 eqid h 0 I | finSupp 0 h = h 0 I | finSupp 0 h
5 4 1 2 esplyval Could not format ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) : No typesetting found for |- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) with typecode |-
6 eqeq2 k = 0 c = k c = 0
7 6 rabbidv k = 0 c 𝒫 I | c = k = c 𝒫 I | c = 0
8 7 imaeq2d k = 0 𝟙 I c 𝒫 I | c = k = 𝟙 I c 𝒫 I | c = 0
9 8 fveq2d k = 0 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = k = 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = 0
10 9 coeq2d k = 0 ℤRHom R 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = k = ℤRHom R 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = 0
11 fvif ℤRHom R if f = I × 0 1 0 = if f = I × 0 ℤRHom R 1 ℤRHom R 0
12 eqid ℤRHom R = ℤRHom R
13 eqid 1 R = 1 R
14 12 13 zrh1 R Ring ℤRHom R 1 = 1 R
15 2 14 syl φ ℤRHom R 1 = 1 R
16 eqid 0 R = 0 R
17 12 16 zrh0 R Ring ℤRHom R 0 = 0 R
18 2 17 syl φ ℤRHom R 0 = 0 R
19 15 18 ifeq12d φ if f = I × 0 ℤRHom R 1 ℤRHom R 0 = if f = I × 0 1 R 0 R
20 19 adantr φ f h 0 I | finSupp 0 h if f = I × 0 ℤRHom R 1 ℤRHom R 0 = if f = I × 0 1 R 0 R
21 11 20 eqtrid φ f h 0 I | finSupp 0 h ℤRHom R if f = I × 0 1 0 = if f = I × 0 1 R 0 R
22 21 mpteq2dva φ f h 0 I | finSupp 0 h ℤRHom R if f = I × 0 1 0 = f h 0 I | finSupp 0 h if f = I × 0 1 R 0 R
23 1zzd φ f h 0 I | finSupp 0 h 1
24 0zd φ f h 0 I | finSupp 0 h 0
25 23 24 ifcld φ f h 0 I | finSupp 0 h if f = I × 0 1 0
26 fveqeq2 c = c = 0 = 0
27 0elpw 𝒫 I
28 27 a1i φ 𝒫 I
29 hash0 = 0
30 29 a1i φ = 0
31 hasheq0 c 𝒫 I c = 0 c =
32 31 biimpa c 𝒫 I c = 0 c =
33 32 adantll φ c 𝒫 I c = 0 c =
34 26 28 30 33 rabeqsnd φ c 𝒫 I | c = 0 =
35 34 imaeq2d φ 𝟙 I c 𝒫 I | c = 0 = 𝟙 I
36 indf1o I V 𝟙 I : 𝒫 I 1-1 onto 0 1 I
37 f1of 𝟙 I : 𝒫 I 1-1 onto 0 1 I 𝟙 I : 𝒫 I 0 1 I
38 1 36 37 3syl φ 𝟙 I : 𝒫 I 0 1 I
39 38 ffnd φ 𝟙 I Fn 𝒫 I
40 39 28 fnimasnd φ 𝟙 I = 𝟙 I
41 indconst0 I V 𝟙 I = I × 0
42 1 41 syl φ 𝟙 I = I × 0
43 42 sneqd φ 𝟙 I = I × 0
44 35 40 43 3eqtrd φ 𝟙 I c 𝒫 I | c = 0 = I × 0
45 44 fveq2d φ 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = 0 = 𝟙 h 0 I | finSupp 0 h I × 0
46 ovex 0 I V
47 46 rabex h 0 I | finSupp 0 h V
48 breq1 h = I × 0 finSupp 0 h finSupp 0 I × 0
49 nn0ex 0 V
50 49 a1i φ 0 V
51 c0ex 0 V
52 51 fconst I × 0 : I 0
53 52 a1i φ I × 0 : I 0
54 0nn0 0 0
55 54 a1i φ 0 0
56 55 snssd φ 0 0
57 53 56 fssd φ I × 0 : I 0
58 50 1 57 elmapdd φ I × 0 0 I
59 0zd φ 0
60 1 59 fczfsuppd φ finSupp 0 I × 0
61 48 58 60 elrabd φ I × 0 h 0 I | finSupp 0 h
62 indsn h 0 I | finSupp 0 h V I × 0 h 0 I | finSupp 0 h 𝟙 h 0 I | finSupp 0 h I × 0 = f h 0 I | finSupp 0 h if f = I × 0 1 0
63 47 61 62 sylancr φ 𝟙 h 0 I | finSupp 0 h I × 0 = f h 0 I | finSupp 0 h if f = I × 0 1 0
64 45 63 eqtrd φ 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = 0 = f h 0 I | finSupp 0 h if f = I × 0 1 0
65 12 zrhrhm R Ring ℤRHom R ring RingHom R
66 zringbas = Base ring
67 eqid Base R = Base R
68 66 67 rhmf ℤRHom R ring RingHom R ℤRHom R : Base R
69 2 65 68 3syl φ ℤRHom R : Base R
70 69 feqmptd φ ℤRHom R = z ℤRHom R z
71 fveq2 z = if f = I × 0 1 0 ℤRHom R z = ℤRHom R if f = I × 0 1 0
72 25 64 70 71 fmptco φ ℤRHom R 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = 0 = f h 0 I | finSupp 0 h ℤRHom R if f = I × 0 1 0
73 eqid I mPoly R = I mPoly R
74 4 psrbasfsupp h 0 I | finSupp 0 h = h 0 I | h -1 Fin
75 73 74 16 13 3 1 2 mpl1 φ U = f h 0 I | finSupp 0 h if f = I × 0 1 R 0 R
76 22 72 75 3eqtr4d φ ℤRHom R 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = 0 = U
77 10 76 sylan9eqr φ k = 0 ℤRHom R 𝟙 h 0 I | finSupp 0 h 𝟙 I c 𝒫 I | c = k = U
78 3 fvexi U V
79 78 a1i φ U V
80 5 77 55 79 fvmptd Could not format ( ph -> ( ( I eSymPoly R ) ` 0 ) = U ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` 0 ) = U ) with typecode |-