Metamath Proof Explorer


Theorem etransclem4

Description: F expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem4.a φA
etransclem4.p φP
etransclem4.M φM0
etransclem4.f F=xAxP1j=1MxjP
etransclem4.h H=j0MxAxjifj=0P1P
etransclem4.e E=xAj=0MHjx
Assertion etransclem4 φF=E

Proof

Step Hyp Ref Expression
1 etransclem4.a φA
2 etransclem4.p φP
3 etransclem4.M φM0
4 etransclem4.f F=xAxP1j=1MxjP
5 etransclem4.h H=j0MxAxjifj=0P1P
6 etransclem4.e E=xAj=0MHjx
7 simpr φj0Mj0M
8 cnex V
9 8 ssex AAV
10 mptexg AVxAxjifj=0P1PV
11 1 9 10 3syl φxAxjifj=0P1PV
12 11 adantr φj0MxAxjifj=0P1PV
13 5 fvmpt2 j0MxAxjifj=0P1PVHj=xAxjifj=0P1P
14 7 12 13 syl2anc φj0MHj=xAxjifj=0P1P
15 ovexd φj0MxAxjifj=0P1PV
16 14 15 fvmpt2d φj0MxAHjx=xjifj=0P1P
17 16 an32s φxAj0MHjx=xjifj=0P1P
18 17 prodeq2dv φxAj=0MHjx=j=0Mxjifj=0P1P
19 nn0uz 0=0
20 3 19 eleqtrdi φM0
21 20 adantr φxAM0
22 1 sselda φxAx
23 22 adantr φxAj0Mx
24 elfzelz j0Mj
25 24 zcnd j0Mj
26 25 adantl φxAj0Mj
27 23 26 subcld φxAj0Mxj
28 nnm1nn0 PP10
29 2 28 syl φP10
30 2 nnnn0d φP0
31 29 30 ifcld φifj=0P1P0
32 31 ad2antrr φxAj0Mifj=0P1P0
33 27 32 expcld φxAj0Mxjifj=0P1P
34 oveq2 j=0xj=x0
35 iftrue j=0ifj=0P1P=P1
36 34 35 oveq12d j=0xjifj=0P1P=x0P1
37 21 33 36 fprod1p φxAj=0Mxjifj=0P1P=x0P1j=0+1Mxjifj=0P1P
38 22 subid1d φxAx0=x
39 38 oveq1d φxAx0P1=xP1
40 0p1e1 0+1=1
41 40 oveq1i 0+1M=1M
42 41 a1i φ0+1M=1M
43 0red j1M0
44 1red j1M1
45 elfzelz j1Mj
46 45 zred j1Mj
47 0lt1 0<1
48 47 a1i j1M0<1
49 elfzle1 j1M1j
50 43 44 46 48 49 ltletrd j1M0<j
51 50 gt0ne0d j1Mj0
52 51 neneqd j1M¬j=0
53 52 iffalsed j1Mifj=0P1P=P
54 53 oveq2d j1Mxjifj=0P1P=xjP
55 54 adantl φj1Mxjifj=0P1P=xjP
56 42 55 prodeq12rdv φj=0+1Mxjifj=0P1P=j=1MxjP
57 56 adantr φxAj=0+1Mxjifj=0P1P=j=1MxjP
58 39 57 oveq12d φxAx0P1j=0+1Mxjifj=0P1P=xP1j=1MxjP
59 18 37 58 3eqtrrd φxAxP1j=1MxjP=j=0MHjx
60 59 mpteq2dva φxAxP1j=1MxjP=xAj=0MHjx
61 60 4 6 3eqtr4g φF=E