Description: F expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | etransclem4.a | |
|
etransclem4.p | |
||
etransclem4.M | |
||
etransclem4.f | |
||
etransclem4.h | |
||
etransclem4.e | |
||
Assertion | etransclem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | etransclem4.a | |
|
2 | etransclem4.p | |
|
3 | etransclem4.M | |
|
4 | etransclem4.f | |
|
5 | etransclem4.h | |
|
6 | etransclem4.e | |
|
7 | simpr | |
|
8 | cnex | |
|
9 | 8 | ssex | |
10 | mptexg | |
|
11 | 1 9 10 | 3syl | |
12 | 11 | adantr | |
13 | 5 | fvmpt2 | |
14 | 7 12 13 | syl2anc | |
15 | ovexd | |
|
16 | 14 15 | fvmpt2d | |
17 | 16 | an32s | |
18 | 17 | prodeq2dv | |
19 | nn0uz | |
|
20 | 3 19 | eleqtrdi | |
21 | 20 | adantr | |
22 | 1 | sselda | |
23 | 22 | adantr | |
24 | elfzelz | |
|
25 | 24 | zcnd | |
26 | 25 | adantl | |
27 | 23 26 | subcld | |
28 | nnm1nn0 | |
|
29 | 2 28 | syl | |
30 | 2 | nnnn0d | |
31 | 29 30 | ifcld | |
32 | 31 | ad2antrr | |
33 | 27 32 | expcld | |
34 | oveq2 | |
|
35 | iftrue | |
|
36 | 34 35 | oveq12d | |
37 | 21 33 36 | fprod1p | |
38 | 22 | subid1d | |
39 | 38 | oveq1d | |
40 | 0p1e1 | |
|
41 | 40 | oveq1i | |
42 | 41 | a1i | |
43 | 0red | |
|
44 | 1red | |
|
45 | elfzelz | |
|
46 | 45 | zred | |
47 | 0lt1 | |
|
48 | 47 | a1i | |
49 | elfzle1 | |
|
50 | 43 44 46 48 49 | ltletrd | |
51 | 50 | gt0ne0d | |
52 | 51 | neneqd | |
53 | 52 | iffalsed | |
54 | 53 | oveq2d | |
55 | 54 | adantl | |
56 | 42 55 | prodeq12rdv | |
57 | 56 | adantr | |
58 | 39 57 | oveq12d | |
59 | 18 37 58 | 3eqtrrd | |
60 | 59 | mpteq2dva | |
61 | 60 4 6 | 3eqtr4g | |