Metamath Proof Explorer


Theorem etransclem45

Description: K is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem45.p φP
etransclem45.m φM0
etransclem45.f F=xxP1j=1MxjP
etransclem45.a φA:0
etransclem45.k K=k0M×0RA1stkDnF2ndk1stkP1!
Assertion etransclem45 φK

Proof

Step Hyp Ref Expression
1 etransclem45.p φP
2 etransclem45.m φM0
3 etransclem45.f F=xxP1j=1MxjP
4 etransclem45.a φA:0
5 etransclem45.k K=k0M×0RA1stkDnF2ndk1stkP1!
6 fzfi 0MFin
7 fzfi 0RFin
8 xpfi 0MFin0RFin0M×0RFin
9 6 7 8 mp2an 0M×0RFin
10 9 a1i φ0M×0RFin
11 nnm1nn0 PP10
12 1 11 syl φP10
13 12 faccld φP1!
14 13 nncnd φP1!
15 4 adantr φk0M×0RA:0
16 xp1st k0M×0R1stk0M
17 elfznn0 1stk0M1stk0
18 16 17 syl k0M×0R1stk0
19 18 adantl φk0M×0R1stk0
20 15 19 ffvelcdmd φk0M×0RA1stk
21 20 zcnd φk0M×0RA1stk
22 reelprrecn
23 22 a1i φk0M×0R
24 reopn topGenran.
25 eqid TopOpenfld=TopOpenfld
26 25 tgioo2 topGenran.=TopOpenfld𝑡
27 24 26 eleqtri TopOpenfld𝑡
28 27 a1i φk0M×0RTopOpenfld𝑡
29 1 adantr φk0M×0RP
30 2 adantr φk0M×0RM0
31 xp2nd k0M×0R2ndk0R
32 elfznn0 2ndk0R2ndk0
33 31 32 syl k0M×0R2ndk0
34 33 adantl φk0M×0R2ndk0
35 23 28 29 30 3 34 etransclem33 φk0M×0RDnF2ndk:
36 19 nn0red φk0M×0R1stk
37 35 36 ffvelcdmd φk0M×0RDnF2ndk1stk
38 21 37 mulcld φk0M×0RA1stkDnF2ndk1stk
39 13 nnne0d φP1!0
40 10 14 38 39 fsumdivc φk0M×0RA1stkDnF2ndk1stkP1!=k0M×0RA1stkDnF2ndk1stkP1!
41 14 adantr φk0M×0RP1!
42 39 adantr φk0M×0RP1!0
43 21 37 41 42 divassd φk0M×0RA1stkDnF2ndk1stkP1!=A1stkDnF2ndk1stkP1!
44 etransclem5 k0Myykifk=0P1P=j0Mxxjifj=0P1P
45 etransclem11 m0d0m0M|k=0Mdk=m=n0c0n0M|j=0Mcj=n
46 16 adantl φk0M×0R1stk0M
47 23 28 29 30 3 34 44 45 46 36 etransclem37 φk0M×0RP1!DnF2ndk1stk
48 13 nnzd φP1!
49 48 adantr φk0M×0RP1!
50 19 nn0zd φk0M×0R1stk
51 23 28 29 30 3 34 36 50 etransclem42 φk0M×0RDnF2ndk1stk
52 dvdsval2 P1!P1!0DnF2ndk1stkP1!DnF2ndk1stkDnF2ndk1stkP1!
53 49 42 51 52 syl3anc φk0M×0RP1!DnF2ndk1stkDnF2ndk1stkP1!
54 47 53 mpbid φk0M×0RDnF2ndk1stkP1!
55 20 54 zmulcld φk0M×0RA1stkDnF2ndk1stkP1!
56 43 55 eqeltrd φk0M×0RA1stkDnF2ndk1stkP1!
57 10 56 fsumzcl φk0M×0RA1stkDnF2ndk1stkP1!
58 40 57 eqeltrd φk0M×0RA1stkDnF2ndk1stkP1!
59 5 58 eqeltrid φK