Metamath Proof Explorer


Theorem eulerpartlemsv2

Description: Lemma for eulerpart . Value of the sum of a finite partition A (Contributed by Thierry Arnoux, 19-Aug-2018)

Ref Expression
Hypotheses eulerpartlems.r R=f|f-1Fin
eulerpartlems.s S=f0Rkfkk
Assertion eulerpartlemsv2 A0RSA=kA-1Akk

Proof

Step Hyp Ref Expression
1 eulerpartlems.r R=f|f-1Fin
2 eulerpartlems.s S=f0Rkfkk
3 1 2 eulerpartlemsv1 A0RSA=kAkk
4 cnvimass A-1domA
5 1 2 eulerpartlemelr A0RA:0A-1Fin
6 5 simpld A0RA:0
7 4 6 fssdm A0RA-1
8 6 adantr A0RkA-1A:0
9 7 sselda A0RkA-1k
10 8 9 ffvelcdmd A0RkA-1Ak0
11 9 nnnn0d A0RkA-1k0
12 10 11 nn0mulcld A0RkA-1Akk0
13 12 nn0cnd A0RkA-1Akk
14 simpr A0RkA-1kA-1
15 14 eldifad A0RkA-1k
16 14 eldifbd A0RkA-1¬kA-1
17 6 adantr A0RkA-1A:0
18 ffn A:0AFn
19 elpreima AFnkA-1kAk
20 17 18 19 3syl A0RkA-1kA-1kAk
21 16 20 mtbid A0RkA-1¬kAk
22 imnan k¬Ak¬kAk
23 21 22 sylibr A0RkA-1k¬Ak
24 15 23 mpd A0RkA-1¬Ak
25 17 15 ffvelcdmd A0RkA-1Ak0
26 elnn0 Ak0AkAk=0
27 25 26 sylib A0RkA-1AkAk=0
28 orel1 ¬AkAkAk=0Ak=0
29 24 27 28 sylc A0RkA-1Ak=0
30 29 oveq1d A0RkA-1Akk=0k
31 15 nncnd A0RkA-1k
32 31 mul02d A0RkA-10k=0
33 30 32 eqtrd A0RkA-1Akk=0
34 nnuz =1
35 34 eqimssi 1
36 35 a1i A0R1
37 7 13 33 36 sumss A0RkA-1Akk=kAkk
38 3 37 eqtr4d A0RSA=kA-1Akk