Description: Append one path segment to an Eulerian path <. F , P >. which may not be an (Eulerian) circuit to become an Eulerian circuit <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . (Contributed by AV, 11-Mar-2021) (Proof shortened by AV, 30-Oct-2021) (Revised by AV, 8-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eupthp1.v | |
|
eupthp1.i | |
||
eupthp1.f | |
||
eupthp1.a | |
||
eupthp1.b | |
||
eupthp1.c | |
||
eupthp1.d | |
||
eupthp1.p | |
||
eupthp1.n | |
||
eupthp1.e | |
||
eupthp1.x | |
||
eupthp1.u | |
||
eupthp1.h | |
||
eupthp1.q | |
||
eupthp1.s | |
||
eupthp1.l | |
||
eupth2eucrct.c | |
||
Assertion | eupth2eucrct | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eupthp1.v | |
|
2 | eupthp1.i | |
|
3 | eupthp1.f | |
|
4 | eupthp1.a | |
|
5 | eupthp1.b | |
|
6 | eupthp1.c | |
|
7 | eupthp1.d | |
|
8 | eupthp1.p | |
|
9 | eupthp1.n | |
|
10 | eupthp1.e | |
|
11 | eupthp1.x | |
|
12 | eupthp1.u | |
|
13 | eupthp1.h | |
|
14 | eupthp1.q | |
|
15 | eupthp1.s | |
|
16 | eupthp1.l | |
|
17 | eupth2eucrct.c | |
|
18 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | eupthp1 | |
19 | simpr | |
|
20 | eupthistrl | |
|
21 | 20 | adantl | |
22 | fveq2 | |
|
23 | fveq2 | |
|
24 | 22 23 | eqeq12d | |
25 | eupthiswlk | |
|
26 | 8 25 | syl | |
27 | 12 | a1i | |
28 | 15 | a1i | |
29 | 1 2 3 4 5 6 7 26 9 10 11 27 13 14 28 | wlkp1lem5 | |
30 | 2 | wlkf | |
31 | 25 30 | syl | |
32 | lencl | |
|
33 | 9 | eleq1i | |
34 | 0elfz | |
|
35 | 33 34 | sylbir | |
36 | 32 35 | syl | |
37 | 8 31 36 | 3syl | |
38 | 24 29 37 | rspcdva | |
39 | 38 | adantr | |
40 | 17 | eqcomd | |
41 | 40 | adantr | |
42 | 14 | a1i | |
43 | 13 | fveq2i | |
44 | 43 | a1i | |
45 | wrdfin | |
|
46 | 30 45 | syl | |
47 | 8 25 46 | 3syl | |
48 | 47 | adantr | |
49 | snfi | |
|
50 | 49 | a1i | |
51 | wrddm | |
|
52 | 8 31 51 | 3syl | |
53 | fzonel | |
|
54 | 53 | a1i | |
55 | 9 | eleq1i | |
56 | 54 55 | sylnibr | |
57 | eleq2 | |
|
58 | 57 | notbid | |
59 | 56 58 | syl5ibrcom | |
60 | 9 | fvexi | |
61 | 60 | a1i | |
62 | 61 5 | opeldmd | |
63 | 59 62 | nsyld | |
64 | 52 63 | mpd | |
65 | 64 | adantr | |
66 | disjsn | |
|
67 | 65 66 | sylibr | |
68 | hashun | |
|
69 | 48 50 67 68 | syl3anc | |
70 | 9 | eqcomi | |
71 | opex | |
|
72 | hashsng | |
|
73 | 71 72 | ax-mp | |
74 | 70 73 | oveq12i | |
75 | 74 | a1i | |
76 | 44 69 75 | 3eqtrd | |
77 | 42 76 | fveq12d | |
78 | ovexd | |
|
79 | 1 2 3 4 5 6 7 26 9 | wlkp1lem1 | |
80 | 78 6 79 | 3jca | |
81 | 80 | adantr | |
82 | fsnunfv | |
|
83 | 81 82 | syl | |
84 | 77 83 | eqtr2d | |
85 | 39 41 84 | 3eqtrd | |
86 | iscrct | |
|
87 | 21 85 86 | sylanbrc | |
88 | 19 87 | jca | |
89 | 18 88 | mpdan | |