Metamath Proof Explorer


Theorem eupth2eucrct

Description: Append one path segment to an Eulerian path <. F , P >. which may not be an (Eulerian) circuit to become an Eulerian circuit <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . (Contributed by AV, 11-Mar-2021) (Proof shortened by AV, 30-Oct-2021) (Revised by AV, 8-Apr-2024)

Ref Expression
Hypotheses eupthp1.v V=VtxG
eupthp1.i I=iEdgG
eupthp1.f φFunI
eupthp1.a φIFin
eupthp1.b φBW
eupthp1.c φCV
eupthp1.d φ¬BdomI
eupthp1.p φFEulerPathsGP
eupthp1.n N=F
eupthp1.e φEEdgG
eupthp1.x φPNCE
eupthp1.u iEdgS=IBE
eupthp1.h H=FNB
eupthp1.q Q=PN+1C
eupthp1.s VtxS=V
eupthp1.l φC=PNE=C
eupth2eucrct.c φC=P0
Assertion eupth2eucrct φHEulerPathsSQHCircuitsSQ

Proof

Step Hyp Ref Expression
1 eupthp1.v V=VtxG
2 eupthp1.i I=iEdgG
3 eupthp1.f φFunI
4 eupthp1.a φIFin
5 eupthp1.b φBW
6 eupthp1.c φCV
7 eupthp1.d φ¬BdomI
8 eupthp1.p φFEulerPathsGP
9 eupthp1.n N=F
10 eupthp1.e φEEdgG
11 eupthp1.x φPNCE
12 eupthp1.u iEdgS=IBE
13 eupthp1.h H=FNB
14 eupthp1.q Q=PN+1C
15 eupthp1.s VtxS=V
16 eupthp1.l φC=PNE=C
17 eupth2eucrct.c φC=P0
18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 eupthp1 φHEulerPathsSQ
19 simpr φHEulerPathsSQHEulerPathsSQ
20 eupthistrl HEulerPathsSQHTrailsSQ
21 20 adantl φHEulerPathsSQHTrailsSQ
22 fveq2 k=0Qk=Q0
23 fveq2 k=0Pk=P0
24 22 23 eqeq12d k=0Qk=PkQ0=P0
25 eupthiswlk FEulerPathsGPFWalksGP
26 8 25 syl φFWalksGP
27 12 a1i φiEdgS=IBE
28 15 a1i φVtxS=V
29 1 2 3 4 5 6 7 26 9 10 11 27 13 14 28 wlkp1lem5 φk0NQk=Pk
30 2 wlkf FWalksGPFWorddomI
31 25 30 syl FEulerPathsGPFWorddomI
32 lencl FWorddomIF0
33 9 eleq1i N0F0
34 0elfz N000N
35 33 34 sylbir F000N
36 32 35 syl FWorddomI00N
37 8 31 36 3syl φ00N
38 24 29 37 rspcdva φQ0=P0
39 38 adantr φHEulerPathsSQQ0=P0
40 17 eqcomd φP0=C
41 40 adantr φHEulerPathsSQP0=C
42 14 a1i φHEulerPathsSQQ=PN+1C
43 13 fveq2i H=FNB
44 43 a1i φHEulerPathsSQH=FNB
45 wrdfin FWorddomIFFin
46 30 45 syl FWalksGPFFin
47 8 25 46 3syl φFFin
48 47 adantr φHEulerPathsSQFFin
49 snfi NBFin
50 49 a1i φHEulerPathsSQNBFin
51 wrddm FWorddomIdomF=0..^F
52 8 31 51 3syl φdomF=0..^F
53 fzonel ¬F0..^F
54 53 a1i φ¬F0..^F
55 9 eleq1i N0..^FF0..^F
56 54 55 sylnibr φ¬N0..^F
57 eleq2 domF=0..^FNdomFN0..^F
58 57 notbid domF=0..^F¬NdomF¬N0..^F
59 56 58 syl5ibrcom φdomF=0..^F¬NdomF
60 9 fvexi NV
61 60 a1i φNV
62 61 5 opeldmd φNBFNdomF
63 59 62 nsyld φdomF=0..^F¬NBF
64 52 63 mpd φ¬NBF
65 64 adantr φHEulerPathsSQ¬NBF
66 disjsn FNB=¬NBF
67 65 66 sylibr φHEulerPathsSQFNB=
68 hashun FFinNBFinFNB=FNB=F+NB
69 48 50 67 68 syl3anc φHEulerPathsSQFNB=F+NB
70 9 eqcomi F=N
71 opex NBV
72 hashsng NBVNB=1
73 71 72 ax-mp NB=1
74 70 73 oveq12i F+NB=N+1
75 74 a1i φHEulerPathsSQF+NB=N+1
76 44 69 75 3eqtrd φHEulerPathsSQH=N+1
77 42 76 fveq12d φHEulerPathsSQQH=PN+1CN+1
78 ovexd φN+1V
79 1 2 3 4 5 6 7 26 9 wlkp1lem1 φ¬N+1domP
80 78 6 79 3jca φN+1VCV¬N+1domP
81 80 adantr φHEulerPathsSQN+1VCV¬N+1domP
82 fsnunfv N+1VCV¬N+1domPPN+1CN+1=C
83 81 82 syl φHEulerPathsSQPN+1CN+1=C
84 77 83 eqtr2d φHEulerPathsSQC=QH
85 39 41 84 3eqtrd φHEulerPathsSQQ0=QH
86 iscrct HCircuitsSQHTrailsSQQ0=QH
87 21 85 86 sylanbrc φHEulerPathsSQHCircuitsSQ
88 19 87 jca φHEulerPathsSQHEulerPathsSQHCircuitsSQ
89 18 88 mpdan φHEulerPathsSQHCircuitsSQ