Metamath Proof Explorer


Theorem eupth2lem3lem3

Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If a loop { ( PN ) , ( P( N + 1 ) ) } is added to a trail, the degree of the vertices with odd degree remains odd (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 21-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
trlsegvdeg.vx φVtxX=V
trlsegvdeg.vy φVtxY=V
trlsegvdeg.vz φVtxZ=V
trlsegvdeg.ix φiEdgX=IF0..^N
trlsegvdeg.iy φiEdgY=FNIFN
trlsegvdeg.iz φiEdgZ=IF0N
eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
eupth2lem3lem3.e φif-PN=PN+1IFN=PNPNPN+1IFN
Assertion eupth2lem3lem3 φPN=PN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trlsegvdeg.vx φVtxX=V
8 trlsegvdeg.vy φVtxY=V
9 trlsegvdeg.vz φVtxZ=V
10 trlsegvdeg.ix φiEdgX=IF0..^N
11 trlsegvdeg.iy φiEdgY=FNIFN
12 trlsegvdeg.iz φiEdgZ=IF0N
13 eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
14 eupth2lem3lem3.e φif-PN=PN+1IFN=PNPNPN+1IFN
15 fveq2 x=UVtxDegXx=VtxDegXU
16 15 breq2d x=U2VtxDegXx2VtxDegXU
17 16 notbid x=U¬2VtxDegXx¬2VtxDegXU
18 17 elrab3 UVUxV|¬2VtxDegXx¬2VtxDegXU
19 5 18 syl φUxV|¬2VtxDegXx¬2VtxDegXU
20 13 eleq2d φUxV|¬2VtxDegXxUifP0=PNP0PN
21 19 20 bitr3d φ¬2VtxDegXUUifP0=PNP0PN
22 21 adantr φPN=PN+1¬2VtxDegXUUifP0=PNP0PN
23 2z 2
24 23 a1i φPN=PN+12
25 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem1 φVtxDegXU0
26 25 nn0zd φVtxDegXU
27 26 adantr φPN=PN+1VtxDegXU
28 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem2 φVtxDegYU0
29 28 nn0zd φVtxDegYU
30 29 adantr φPN=PN+1VtxDegYU
31 z2even 22
32 8 ad2antrr φPN=PN+1U=PNVtxY=V
33 fvexd φPN=PN+1U=PNFNV
34 5 ad2antrr φPN=PN+1U=PNUV
35 11 ad2antrr φPN=PN+1U=PNiEdgY=FNIFN
36 14 adantr φPN=PN+1if-PN=PN+1IFN=PNPNPN+1IFN
37 ifptru PN=PN+1if-PN=PN+1IFN=PNPNPN+1IFNIFN=PN
38 37 adantl φPN=PN+1if-PN=PN+1IFN=PNPNPN+1IFNIFN=PN
39 36 38 mpbid φPN=PN+1IFN=PN
40 sneq PN=UPN=U
41 40 eqcoms U=PNPN=U
42 39 41 sylan9eq φPN=PN+1U=PNIFN=U
43 42 opeq2d φPN=PN+1U=PNFNIFN=FNU
44 43 sneqd φPN=PN+1U=PNFNIFN=FNU
45 35 44 eqtrd φPN=PN+1U=PNiEdgY=FNU
46 32 33 34 45 1loopgrvd2 φPN=PN+1U=PNVtxDegYU=2
47 31 46 breqtrrid φPN=PN+1U=PN2VtxDegYU
48 z0even 20
49 8 ad2antrr φPN=PN+1UPNVtxY=V
50 fvexd φPN=PN+1UPNFNV
51 1 2 3 4 5 6 trlsegvdeglem1 φPNVPN+1V
52 51 simpld φPNV
53 52 ad2antrr φPN=PN+1UPNPNV
54 11 adantr φPN=PN+1iEdgY=FNIFN
55 39 opeq2d φPN=PN+1FNIFN=FNPN
56 55 sneqd φPN=PN+1FNIFN=FNPN
57 54 56 eqtrd φPN=PN+1iEdgY=FNPN
58 57 adantr φPN=PN+1UPNiEdgY=FNPN
59 5 adantr φPN=PN+1UV
60 59 anim1i φPN=PN+1UPNUVUPN
61 eldifsn UVPNUVUPN
62 60 61 sylibr φPN=PN+1UPNUVPN
63 49 50 53 58 62 1loopgrvd0 φPN=PN+1UPNVtxDegYU=0
64 48 63 breqtrrid φPN=PN+1UPN2VtxDegYU
65 47 64 pm2.61dane φPN=PN+12VtxDegYU
66 dvdsadd2b 2VtxDegXUVtxDegYU2VtxDegYU2VtxDegXU2VtxDegYU+VtxDegXU
67 24 27 30 65 66 syl112anc φPN=PN+12VtxDegXU2VtxDegYU+VtxDegXU
68 28 nn0cnd φVtxDegYU
69 25 nn0cnd φVtxDegXU
70 68 69 addcomd φVtxDegYU+VtxDegXU=VtxDegXU+VtxDegYU
71 70 breq2d φ2VtxDegYU+VtxDegXU2VtxDegXU+VtxDegYU
72 71 adantr φPN=PN+12VtxDegYU+VtxDegXU2VtxDegXU+VtxDegYU
73 67 72 bitrd φPN=PN+12VtxDegXU2VtxDegXU+VtxDegYU
74 73 notbid φPN=PN+1¬2VtxDegXU¬2VtxDegXU+VtxDegYU
75 simpr φPN=PN+1PN=PN+1
76 75 eqeq2d φPN=PN+1P0=PNP0=PN+1
77 75 preq2d φPN=PN+1P0PN=P0PN+1
78 76 77 ifbieq2d φPN=PN+1ifP0=PNP0PN=ifP0=PN+1P0PN+1
79 78 eleq2d φPN=PN+1UifP0=PNP0PNUifP0=PN+1P0PN+1
80 22 74 79 3bitr3d φPN=PN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1