Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | trlsegvdeg.v | |
|
trlsegvdeg.i | |
||
trlsegvdeg.f | |
||
trlsegvdeg.n | |
||
trlsegvdeg.u | |
||
trlsegvdeg.w | |
||
trlsegvdeg.vx | |
||
trlsegvdeg.vy | |
||
trlsegvdeg.vz | |
||
trlsegvdeg.ix | |
||
trlsegvdeg.iy | |
||
trlsegvdeg.iz | |
||
eupth2lem3.o | |
||
eupth2lem3lem3.e | |
||
eupth2lem3lem4.i | |
||
Assertion | eupth2lem3lem4 | |