Metamath Proof Explorer


Theorem eupth2lem3lem4

Description: Lemma for eupth2lem3 , formerly part of proof of eupth2lem3 : If an edge (not a loop) is added to a trail, the degree of the end vertices of this edge remains odd if it was odd before (regarding the subgraphs induced by the involved trails). (Contributed by Mario Carneiro, 8-Apr-2015) (Revised by AV, 25-Feb-2021)

Ref Expression
Hypotheses trlsegvdeg.v V=VtxG
trlsegvdeg.i I=iEdgG
trlsegvdeg.f φFunI
trlsegvdeg.n φN0..^F
trlsegvdeg.u φUV
trlsegvdeg.w φFTrailsGP
trlsegvdeg.vx φVtxX=V
trlsegvdeg.vy φVtxY=V
trlsegvdeg.vz φVtxZ=V
trlsegvdeg.ix φiEdgX=IF0..^N
trlsegvdeg.iy φiEdgY=FNIFN
trlsegvdeg.iz φiEdgZ=IF0N
eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
eupth2lem3lem3.e φif-PN=PN+1IFN=PNPNPN+1IFN
eupth2lem3lem4.i φIFN𝒫V
Assertion eupth2lem3lem4 φPNPN+1U=PNU=PN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1

Proof

Step Hyp Ref Expression
1 trlsegvdeg.v V=VtxG
2 trlsegvdeg.i I=iEdgG
3 trlsegvdeg.f φFunI
4 trlsegvdeg.n φN0..^F
5 trlsegvdeg.u φUV
6 trlsegvdeg.w φFTrailsGP
7 trlsegvdeg.vx φVtxX=V
8 trlsegvdeg.vy φVtxY=V
9 trlsegvdeg.vz φVtxZ=V
10 trlsegvdeg.ix φiEdgX=IF0..^N
11 trlsegvdeg.iy φiEdgY=FNIFN
12 trlsegvdeg.iz φiEdgZ=IF0N
13 eupth2lem3.o φxV|¬2VtxDegXx=ifP0=PNP0PN
14 eupth2lem3lem3.e φif-PN=PN+1IFN=PNPNPN+1IFN
15 eupth2lem3lem4.i φIFN𝒫V
16 fvexd φPNPN+1PN=UFNV
17 5 ad2antrr φPNPN+1PN=UUV
18 1 2 3 4 5 6 trlsegvdeglem1 φPNVPN+1V
19 18 simprd φPN+1V
20 19 ad2antrr φPNPN+1PN=UPN+1V
21 neeq1 PN=UPNPN+1UPN+1
22 21 biimpcd PNPN+1PN=UUPN+1
23 22 adantl φPNPN+1PN=UUPN+1
24 23 imp φPNPN+1PN=UUPN+1
25 15 ad2antrr φPNPN+1PN=UIFN𝒫V
26 11 ad2antrr φPNPN+1PN=UiEdgY=FNIFN
27 14 adantr φPNPN+1if-PN=PN+1IFN=PNPNPN+1IFN
28 df-ne PNPN+1¬PN=PN+1
29 ifpfal ¬PN=PN+1if-PN=PN+1IFN=PNPNPN+1IFNPNPN+1IFN
30 28 29 sylbi PNPN+1if-PN=PN+1IFN=PNPNPN+1IFNPNPN+1IFN
31 30 adantl φPNPN+1if-PN=PN+1IFN=PNPNPN+1IFNPNPN+1IFN
32 preq1 PN=UPNPN+1=UPN+1
33 32 sseq1d PN=UPNPN+1IFNUPN+1IFN
34 33 biimpcd PNPN+1IFNPN=UUPN+1IFN
35 31 34 syl6bi φPNPN+1if-PN=PN+1IFN=PNPNPN+1IFNPN=UUPN+1IFN
36 27 35 mpd φPNPN+1PN=UUPN+1IFN
37 36 imp φPNPN+1PN=UUPN+1IFN
38 8 ad2antrr φPNPN+1PN=UVtxY=V
39 16 17 20 24 25 26 37 38 1hegrvtxdg1 φPNPN+1PN=UVtxDegYU=1
40 39 oveq2d φPNPN+1PN=UVtxDegXU+VtxDegYU=VtxDegXU+1
41 40 breq2d φPNPN+1PN=U2VtxDegXU+VtxDegYU2VtxDegXU+1
42 41 notbid φPNPN+1PN=U¬2VtxDegXU+VtxDegYU¬2VtxDegXU+1
43 1 2 3 4 5 6 7 8 9 10 11 12 eupth2lem3lem1 φVtxDegXU0
44 43 nn0zd φVtxDegXU
45 2nn 2
46 45 a1i φ2
47 1lt2 1<2
48 47 a1i φ1<2
49 ndvdsp1 VtxDegXU21<22VtxDegXU¬2VtxDegXU+1
50 44 46 48 49 syl3anc φ2VtxDegXU¬2VtxDegXU+1
51 50 con2d φ2VtxDegXU+1¬2VtxDegXU
52 1z 1
53 n2dvds1 ¬21
54 opoe VtxDegXU¬2VtxDegXU1¬212VtxDegXU+1
55 52 53 54 mpanr12 VtxDegXU¬2VtxDegXU2VtxDegXU+1
56 55 ex VtxDegXU¬2VtxDegXU2VtxDegXU+1
57 44 56 syl φ¬2VtxDegXU2VtxDegXU+1
58 51 57 impbid φ2VtxDegXU+1¬2VtxDegXU
59 fveq2 x=UVtxDegXx=VtxDegXU
60 59 breq2d x=U2VtxDegXx2VtxDegXU
61 60 notbid x=U¬2VtxDegXx¬2VtxDegXU
62 61 elrab3 UVUxV|¬2VtxDegXx¬2VtxDegXU
63 5 62 syl φUxV|¬2VtxDegXx¬2VtxDegXU
64 13 eleq2d φUxV|¬2VtxDegXxUifP0=PNP0PN
65 58 63 64 3bitr2d φ2VtxDegXU+1UifP0=PNP0PN
66 65 notbid φ¬2VtxDegXU+1¬UifP0=PNP0PN
67 66 ad2antrr φPNPN+1PN=U¬2VtxDegXU+1¬UifP0=PNP0PN
68 fvex PNV
69 68 eupth2lem2 PNPN+1PN=U¬UifP0=PNP0PNUifP0=PN+1P0PN+1
70 69 adantll φPNPN+1PN=U¬UifP0=PNP0PNUifP0=PN+1P0PN+1
71 42 67 70 3bitrd φPNPN+1PN=U¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
72 71 expcom PN=UφPNPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
73 72 eqcoms U=PNφPNPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
74 fvexd φPNPN+1PN+1=UFNV
75 18 simpld φPNV
76 75 ad2antrr φPNPN+1PN+1=UPNV
77 5 ad2antrr φPNPN+1PN+1=UUV
78 neeq2 PN+1=UPNPN+1PNU
79 78 biimpcd PNPN+1PN+1=UPNU
80 79 adantl φPNPN+1PN+1=UPNU
81 80 imp φPNPN+1PN+1=UPNU
82 15 ad2antrr φPNPN+1PN+1=UIFN𝒫V
83 11 ad2antrr φPNPN+1PN+1=UiEdgY=FNIFN
84 preq2 PN+1=UPNPN+1=PNU
85 84 sseq1d PN+1=UPNPN+1IFNPNUIFN
86 85 biimpcd PNPN+1IFNPN+1=UPNUIFN
87 31 86 syl6bi φPNPN+1if-PN=PN+1IFN=PNPNPN+1IFNPN+1=UPNUIFN
88 27 87 mpd φPNPN+1PN+1=UPNUIFN
89 88 imp φPNPN+1PN+1=UPNUIFN
90 8 ad2antrr φPNPN+1PN+1=UVtxY=V
91 74 76 77 81 82 83 89 90 1hegrvtxdg1r φPNPN+1PN+1=UVtxDegYU=1
92 91 oveq2d φPNPN+1PN+1=UVtxDegXU+VtxDegYU=VtxDegXU+1
93 92 breq2d φPNPN+1PN+1=U2VtxDegXU+VtxDegYU2VtxDegXU+1
94 93 notbid φPNPN+1PN+1=U¬2VtxDegXU+VtxDegYU¬2VtxDegXU+1
95 66 ad2antrr φPNPN+1PN+1=U¬2VtxDegXU+1¬UifP0=PNP0PN
96 necom PNPN+1PN+1PN
97 fvex PN+1V
98 97 eupth2lem2 PN+1PNPN+1=U¬UifP0=PN+1P0PN+1UifP0=PNP0PN
99 96 98 sylanb PNPN+1PN+1=U¬UifP0=PN+1P0PN+1UifP0=PNP0PN
100 99 con1bid PNPN+1PN+1=U¬UifP0=PNP0PNUifP0=PN+1P0PN+1
101 100 adantll φPNPN+1PN+1=U¬UifP0=PNP0PNUifP0=PN+1P0PN+1
102 94 95 101 3bitrd φPNPN+1PN+1=U¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
103 102 expcom PN+1=UφPNPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
104 103 eqcoms U=PN+1φPNPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
105 73 104 jaoi U=PNU=PN+1φPNPN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
106 105 com12 φPNPN+1U=PNU=PN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1
107 106 3impia φPNPN+1U=PNU=PN+1¬2VtxDegXU+VtxDegYUUifP0=PN+1P0PN+1