Metamath Proof Explorer


Theorem evls1maprhm

Description: The function F mapping polynomials p to their subring evaluation at a given point X is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025)

Ref Expression
Hypotheses evls1maprhm.q O=RevalSub1S
evls1maprhm.p P=Poly1R𝑠S
evls1maprhm.b B=BaseR
evls1maprhm.u U=BaseP
evls1maprhm.r φRCRing
evls1maprhm.s φSSubRingR
evls1maprhm.y φXB
evls1maprhm.f F=pUOpX
Assertion evls1maprhm φFPRingHomR

Proof

Step Hyp Ref Expression
1 evls1maprhm.q O=RevalSub1S
2 evls1maprhm.p P=Poly1R𝑠S
3 evls1maprhm.b B=BaseR
4 evls1maprhm.u U=BaseP
5 evls1maprhm.r φRCRing
6 evls1maprhm.s φSSubRingR
7 evls1maprhm.y φXB
8 evls1maprhm.f F=pUOpX
9 eqid 1P=1P
10 eqid 1R=1R
11 eqid P=P
12 eqid R=R
13 eqid R𝑠S=R𝑠S
14 13 subrgcrng RCRingSSubRingRR𝑠SCRing
15 5 6 14 syl2anc φR𝑠SCRing
16 2 ply1crng R𝑠SCRingPCRing
17 15 16 syl φPCRing
18 17 crngringd φPRing
19 5 crngringd φRRing
20 fveq2 p=1POp=O1P
21 20 fveq1d p=1POpX=O1PX
22 4 9 ringidcl PRing1PU
23 18 22 syl φ1PU
24 fvexd φO1PXV
25 8 21 23 24 fvmptd3 φF1P=O1PX
26 13 10 subrg1 SSubRingR1R=1R𝑠S
27 6 26 syl φ1R=1R𝑠S
28 27 fveq2d φalgScP1R=algScP1R𝑠S
29 15 crngringd φR𝑠SRing
30 eqid algScP=algScP
31 eqid 1R𝑠S=1R𝑠S
32 2 30 31 9 ply1scl1 R𝑠SRingalgScP1R𝑠S=1P
33 29 32 syl φalgScP1R𝑠S=1P
34 28 33 eqtr2d φ1P=algScP1R
35 34 fveq2d φO1P=OalgScP1R
36 35 fveq1d φO1PX=OalgScP1RX
37 10 subrg1cl SSubRingR1RS
38 6 37 syl φ1RS
39 1 2 13 3 30 5 6 38 7 evls1scafv φOalgScP1RX=1R
40 25 36 39 3eqtrd φF1P=1R
41 5 adantr φqUrURCRing
42 6 adantr φqUrUSSubRingR
43 simprl φqUrUqU
44 simprr φqUrUrU
45 7 adantr φqUrUXB
46 1 3 2 13 4 11 12 41 42 43 44 45 evls1muld φqUrUOqPrX=OqXROrX
47 fveq2 p=qPrOp=OqPr
48 47 fveq1d p=qPrOpX=OqPrX
49 18 adantr φqUrUPRing
50 4 11 49 43 44 ringcld φqUrUqPrU
51 fvexd φqUrUOqPrXV
52 8 48 50 51 fvmptd3 φqUrUFqPr=OqPrX
53 fveq2 p=qOp=Oq
54 53 fveq1d p=qOpX=OqX
55 fvexd φqUrUOqXV
56 8 54 43 55 fvmptd3 φqUrUFq=OqX
57 fveq2 p=rOp=Or
58 57 fveq1d p=rOpX=OrX
59 fvexd φqUrUOrXV
60 8 58 44 59 fvmptd3 φqUrUFr=OrX
61 56 60 oveq12d φqUrUFqRFr=OqXROrX
62 46 52 61 3eqtr4d φqUrUFqPr=FqRFr
63 eqid +P=+P
64 eqid +R=+R
65 eqid eval1R=eval1R
66 1 3 2 13 4 65 5 6 ressply1evl φO=eval1RU
67 66 adantr φpUO=eval1RU
68 67 fveq1d φpUOp=eval1RUp
69 simpr φpUpU
70 69 fvresd φpUeval1RUp=eval1Rp
71 68 70 eqtrd φpUOp=eval1Rp
72 71 fveq1d φpUOpX=eval1RpX
73 eqid Poly1R=Poly1R
74 eqid BasePoly1R=BasePoly1R
75 5 adantr φpURCRing
76 7 adantr φpUXB
77 eqid PwSer1R𝑠S=PwSer1R𝑠S
78 eqid BasePwSer1R𝑠S=BasePwSer1R𝑠S
79 73 13 2 4 6 77 78 74 ressply1bas2 φU=BasePwSer1R𝑠SBasePoly1R
80 inss2 BasePwSer1R𝑠SBasePoly1RBasePoly1R
81 79 80 eqsstrdi φUBasePoly1R
82 81 sselda φpUpBasePoly1R
83 65 73 3 74 75 76 82 fveval1fvcl φpUeval1RpXB
84 72 83 eqeltrd φpUOpXB
85 84 8 fmptd φF:UB
86 1 3 2 13 4 63 64 41 42 43 44 45 evls1addd φqUrUOq+PrX=OqX+ROrX
87 fveq2 p=q+PrOp=Oq+Pr
88 87 fveq1d p=q+PrOpX=Oq+PrX
89 49 ringgrpd φqUrUPGrp
90 4 63 89 43 44 grpcld φqUrUq+PrU
91 fvexd φqUrUOq+PrXV
92 8 88 90 91 fvmptd3 φqUrUFq+Pr=Oq+PrX
93 56 60 oveq12d φqUrUFq+RFr=OqX+ROrX
94 86 92 93 3eqtr4d φqUrUFq+Pr=Fq+RFr
95 4 9 10 11 12 18 19 40 62 3 63 64 85 94 isrhmd φFPRingHomR