Metamath Proof Explorer


Theorem expnbnd

Description: Exponentiation with a base greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007)

Ref Expression
Assertion expnbnd AB1<BkA<Bk

Proof

Step Hyp Ref Expression
1 1nn 1
2 1re 1
3 lttr A1BA<11<BA<B
4 2 3 mp3an2 ABA<11<BA<B
5 4 exp4b ABA<11<BA<B
6 5 com34 AB1<BA<1A<B
7 6 3imp1 AB1<BA<1A<B
8 recn BB
9 exp1 BB1=B
10 8 9 syl BB1=B
11 10 3ad2ant2 AB1<BB1=B
12 11 adantr AB1<BA<1B1=B
13 7 12 breqtrrd AB1<BA<1A<B1
14 oveq2 k=1Bk=B1
15 14 breq2d k=1A<BkA<B1
16 15 rspcev 1A<B1kA<Bk
17 1 13 16 sylancr AB1<BA<1kA<Bk
18 peano2rem AA1
19 18 adantr AB1<BA1
20 peano2rem BB1
21 20 adantr B1<BB1
22 21 adantl AB1<BB1
23 posdif 1B1<B0<B1
24 2 23 mpan B1<B0<B1
25 24 biimpa B1<B0<B1
26 25 gt0ne0d B1<BB10
27 26 adantl AB1<BB10
28 19 22 27 redivcld AB1<BA1B1
29 28 adantll 1AAB1<BA1B1
30 18 adantl 1AAA1
31 subge0 A10A11A
32 2 31 mpan2 A0A11A
33 32 biimparc 1AA0A1
34 30 33 jca 1AAA10A1
35 21 25 jca B1<BB10<B1
36 divge0 A10A1B10<B10A1B1
37 34 35 36 syl2an 1AAB1<B0A1B1
38 flge0nn0 A1B10A1B1A1B10
39 29 37 38 syl2anc 1AAB1<BA1B10
40 nn0p1nn A1B10A1B1+1
41 39 40 syl 1AAB1<BA1B1+1
42 simplr 1AAB1<BA
43 21 adantl 1AAB1<BB1
44 peano2nn0 A1B10A1B1+10
45 39 44 syl 1AAB1<BA1B1+10
46 45 nn0red 1AAB1<BA1B1+1
47 43 46 remulcld 1AAB1<BB1A1B1+1
48 peano2re B1A1B1+1B1A1B1+1+1
49 47 48 syl 1AAB1<BB1A1B1+1+1
50 simprl 1AAB1<BB
51 reexpcl BA1B1+10BA1B1+1
52 50 45 51 syl2anc 1AAB1<BBA1B1+1
53 flltp1 A1B1A1B1<A1B1+1
54 29 53 syl 1AAB1<BA1B1<A1B1+1
55 30 adantr 1AAB1<BA1
56 25 adantl 1AAB1<B0<B1
57 ltdivmul A1A1B1+1B10<B1A1B1<A1B1+1A1<B1A1B1+1
58 55 46 43 56 57 syl112anc 1AAB1<BA1B1<A1B1+1A1<B1A1B1+1
59 54 58 mpbid 1AAB1<BA1<B1A1B1+1
60 ltsubadd A1B1A1B1+1A1<B1A1B1+1A<B1A1B1+1+1
61 2 60 mp3an2 AB1A1B1+1A1<B1A1B1+1A<B1A1B1+1+1
62 42 47 61 syl2anc 1AAB1<BA1<B1A1B1+1A<B1A1B1+1+1
63 59 62 mpbid 1AAB1<BA<B1A1B1+1+1
64 0lt1 0<1
65 0re 0
66 lttr 01B0<11<B0<B
67 65 2 66 mp3an12 B0<11<B0<B
68 64 67 mpani B1<B0<B
69 ltle 0B0<B0B
70 65 69 mpan B0<B0B
71 68 70 syld B1<B0B
72 71 imp B1<B0B
73 72 adantl 1AAB1<B0B
74 bernneq2 BA1B1+100BB1A1B1+1+1BA1B1+1
75 50 45 73 74 syl3anc 1AAB1<BB1A1B1+1+1BA1B1+1
76 42 49 52 63 75 ltletrd 1AAB1<BA<BA1B1+1
77 oveq2 k=A1B1+1Bk=BA1B1+1
78 77 breq2d k=A1B1+1A<BkA<BA1B1+1
79 78 rspcev A1B1+1A<BA1B1+1kA<Bk
80 41 76 79 syl2anc 1AAB1<BkA<Bk
81 80 exp43 1AAB1<BkA<Bk
82 81 com4l AB1<B1AkA<Bk
83 82 3imp1 AB1<B1AkA<Bk
84 simp1 AB1<BA
85 1red AB1<B1
86 17 83 84 85 ltlecasei AB1<BkA<Bk