| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1nn |  | 
						
							| 2 |  | 1re |  | 
						
							| 3 |  | lttr |  | 
						
							| 4 | 2 3 | mp3an2 |  | 
						
							| 5 | 4 | exp4b |  | 
						
							| 6 | 5 | com34 |  | 
						
							| 7 | 6 | 3imp1 |  | 
						
							| 8 |  | recn |  | 
						
							| 9 |  | exp1 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 | 10 | 3ad2ant2 |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 | 7 12 | breqtrrd |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 14 | breq2d |  | 
						
							| 16 | 15 | rspcev |  | 
						
							| 17 | 1 13 16 | sylancr |  | 
						
							| 18 |  | peano2rem |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | peano2rem |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 |  | posdif |  | 
						
							| 24 | 2 23 | mpan |  | 
						
							| 25 | 24 | biimpa |  | 
						
							| 26 | 25 | gt0ne0d |  | 
						
							| 27 | 26 | adantl |  | 
						
							| 28 | 19 22 27 | redivcld |  | 
						
							| 29 | 28 | adantll |  | 
						
							| 30 | 18 | adantl |  | 
						
							| 31 |  | subge0 |  | 
						
							| 32 | 2 31 | mpan2 |  | 
						
							| 33 | 32 | biimparc |  | 
						
							| 34 | 30 33 | jca |  | 
						
							| 35 | 21 25 | jca |  | 
						
							| 36 |  | divge0 |  | 
						
							| 37 | 34 35 36 | syl2an |  | 
						
							| 38 |  | flge0nn0 |  | 
						
							| 39 | 29 37 38 | syl2anc |  | 
						
							| 40 |  | nn0p1nn |  | 
						
							| 41 | 39 40 | syl |  | 
						
							| 42 |  | simplr |  | 
						
							| 43 | 21 | adantl |  | 
						
							| 44 |  | peano2nn0 |  | 
						
							| 45 | 39 44 | syl |  | 
						
							| 46 | 45 | nn0red |  | 
						
							| 47 | 43 46 | remulcld |  | 
						
							| 48 |  | peano2re |  | 
						
							| 49 | 47 48 | syl |  | 
						
							| 50 |  | simprl |  | 
						
							| 51 |  | reexpcl |  | 
						
							| 52 | 50 45 51 | syl2anc |  | 
						
							| 53 |  | flltp1 |  | 
						
							| 54 | 29 53 | syl |  | 
						
							| 55 | 30 | adantr |  | 
						
							| 56 | 25 | adantl |  | 
						
							| 57 |  | ltdivmul |  | 
						
							| 58 | 55 46 43 56 57 | syl112anc |  | 
						
							| 59 | 54 58 | mpbid |  | 
						
							| 60 |  | ltsubadd |  | 
						
							| 61 | 2 60 | mp3an2 |  | 
						
							| 62 | 42 47 61 | syl2anc |  | 
						
							| 63 | 59 62 | mpbid |  | 
						
							| 64 |  | 0lt1 |  | 
						
							| 65 |  | 0re |  | 
						
							| 66 |  | lttr |  | 
						
							| 67 | 65 2 66 | mp3an12 |  | 
						
							| 68 | 64 67 | mpani |  | 
						
							| 69 |  | ltle |  | 
						
							| 70 | 65 69 | mpan |  | 
						
							| 71 | 68 70 | syld |  | 
						
							| 72 | 71 | imp |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 |  | bernneq2 |  | 
						
							| 75 | 50 45 73 74 | syl3anc |  | 
						
							| 76 | 42 49 52 63 75 | ltletrd |  | 
						
							| 77 |  | oveq2 |  | 
						
							| 78 | 77 | breq2d |  | 
						
							| 79 | 78 | rspcev |  | 
						
							| 80 | 41 76 79 | syl2anc |  | 
						
							| 81 | 80 | exp43 |  | 
						
							| 82 | 81 | com4l |  | 
						
							| 83 | 82 | 3imp1 |  | 
						
							| 84 |  | simp1 |  | 
						
							| 85 |  | 1red |  | 
						
							| 86 | 17 83 84 85 | ltlecasei |  |