Metamath Proof Explorer


Theorem expnbnd

Description: Exponentiation with a mantissa greater than 1 has no upper bound. (Contributed by NM, 20-Oct-2007)

Ref Expression
Assertion expnbnd A B 1 < B k A < B k

Proof

Step Hyp Ref Expression
1 1nn 1
2 1re 1
3 lttr A 1 B A < 1 1 < B A < B
4 2 3 mp3an2 A B A < 1 1 < B A < B
5 4 exp4b A B A < 1 1 < B A < B
6 5 com34 A B 1 < B A < 1 A < B
7 6 3imp1 A B 1 < B A < 1 A < B
8 recn B B
9 exp1 B B 1 = B
10 8 9 syl B B 1 = B
11 10 3ad2ant2 A B 1 < B B 1 = B
12 11 adantr A B 1 < B A < 1 B 1 = B
13 7 12 breqtrrd A B 1 < B A < 1 A < B 1
14 oveq2 k = 1 B k = B 1
15 14 breq2d k = 1 A < B k A < B 1
16 15 rspcev 1 A < B 1 k A < B k
17 1 13 16 sylancr A B 1 < B A < 1 k A < B k
18 peano2rem A A 1
19 18 adantr A B 1 < B A 1
20 peano2rem B B 1
21 20 adantr B 1 < B B 1
22 21 adantl A B 1 < B B 1
23 posdif 1 B 1 < B 0 < B 1
24 2 23 mpan B 1 < B 0 < B 1
25 24 biimpa B 1 < B 0 < B 1
26 25 gt0ne0d B 1 < B B 1 0
27 26 adantl A B 1 < B B 1 0
28 19 22 27 redivcld A B 1 < B A 1 B 1
29 28 adantll 1 A A B 1 < B A 1 B 1
30 18 adantl 1 A A A 1
31 subge0 A 1 0 A 1 1 A
32 2 31 mpan2 A 0 A 1 1 A
33 32 biimparc 1 A A 0 A 1
34 30 33 jca 1 A A A 1 0 A 1
35 21 25 jca B 1 < B B 1 0 < B 1
36 divge0 A 1 0 A 1 B 1 0 < B 1 0 A 1 B 1
37 34 35 36 syl2an 1 A A B 1 < B 0 A 1 B 1
38 flge0nn0 A 1 B 1 0 A 1 B 1 A 1 B 1 0
39 29 37 38 syl2anc 1 A A B 1 < B A 1 B 1 0
40 nn0p1nn A 1 B 1 0 A 1 B 1 + 1
41 39 40 syl 1 A A B 1 < B A 1 B 1 + 1
42 simplr 1 A A B 1 < B A
43 21 adantl 1 A A B 1 < B B 1
44 peano2nn0 A 1 B 1 0 A 1 B 1 + 1 0
45 39 44 syl 1 A A B 1 < B A 1 B 1 + 1 0
46 45 nn0red 1 A A B 1 < B A 1 B 1 + 1
47 43 46 remulcld 1 A A B 1 < B B 1 A 1 B 1 + 1
48 peano2re B 1 A 1 B 1 + 1 B 1 A 1 B 1 + 1 + 1
49 47 48 syl 1 A A B 1 < B B 1 A 1 B 1 + 1 + 1
50 simprl 1 A A B 1 < B B
51 reexpcl B A 1 B 1 + 1 0 B A 1 B 1 + 1
52 50 45 51 syl2anc 1 A A B 1 < B B A 1 B 1 + 1
53 flltp1 A 1 B 1 A 1 B 1 < A 1 B 1 + 1
54 29 53 syl 1 A A B 1 < B A 1 B 1 < A 1 B 1 + 1
55 30 adantr 1 A A B 1 < B A 1
56 25 adantl 1 A A B 1 < B 0 < B 1
57 ltdivmul A 1 A 1 B 1 + 1 B 1 0 < B 1 A 1 B 1 < A 1 B 1 + 1 A 1 < B 1 A 1 B 1 + 1
58 55 46 43 56 57 syl112anc 1 A A B 1 < B A 1 B 1 < A 1 B 1 + 1 A 1 < B 1 A 1 B 1 + 1
59 54 58 mpbid 1 A A B 1 < B A 1 < B 1 A 1 B 1 + 1
60 ltsubadd A 1 B 1 A 1 B 1 + 1 A 1 < B 1 A 1 B 1 + 1 A < B 1 A 1 B 1 + 1 + 1
61 2 60 mp3an2 A B 1 A 1 B 1 + 1 A 1 < B 1 A 1 B 1 + 1 A < B 1 A 1 B 1 + 1 + 1
62 42 47 61 syl2anc 1 A A B 1 < B A 1 < B 1 A 1 B 1 + 1 A < B 1 A 1 B 1 + 1 + 1
63 59 62 mpbid 1 A A B 1 < B A < B 1 A 1 B 1 + 1 + 1
64 0lt1 0 < 1
65 0re 0
66 lttr 0 1 B 0 < 1 1 < B 0 < B
67 65 2 66 mp3an12 B 0 < 1 1 < B 0 < B
68 64 67 mpani B 1 < B 0 < B
69 ltle 0 B 0 < B 0 B
70 65 69 mpan B 0 < B 0 B
71 68 70 syld B 1 < B 0 B
72 71 imp B 1 < B 0 B
73 72 adantl 1 A A B 1 < B 0 B
74 bernneq2 B A 1 B 1 + 1 0 0 B B 1 A 1 B 1 + 1 + 1 B A 1 B 1 + 1
75 50 45 73 74 syl3anc 1 A A B 1 < B B 1 A 1 B 1 + 1 + 1 B A 1 B 1 + 1
76 42 49 52 63 75 ltletrd 1 A A B 1 < B A < B A 1 B 1 + 1
77 oveq2 k = A 1 B 1 + 1 B k = B A 1 B 1 + 1
78 77 breq2d k = A 1 B 1 + 1 A < B k A < B A 1 B 1 + 1
79 78 rspcev A 1 B 1 + 1 A < B A 1 B 1 + 1 k A < B k
80 41 76 79 syl2anc 1 A A B 1 < B k A < B k
81 80 exp43 1 A A B 1 < B k A < B k
82 81 com4l A B 1 < B 1 A k A < B k
83 82 3imp1 A B 1 < B 1 A k A < B k
84 simp1 A B 1 < B A
85 1red A B 1 < B 1
86 17 83 84 85 ltlecasei A B 1 < B k A < B k