Metamath Proof Explorer


Theorem fctop

Description: The finite complement topology on a set A . Example 3 in Munkres p. 77. (Contributed by FL, 15-Aug-2006) (Revised by Mario Carneiro, 13-Aug-2015)

Ref Expression
Assertion fctop AVx𝒫A|AxFinx=TopOnA

Proof

Step Hyp Ref Expression
1 difeq2 x=yAx=Ay
2 1 eleq1d x=yAxFinAyFin
3 eqeq1 x=yx=y=
4 2 3 orbi12d x=yAxFinx=AyFiny=
5 uniss yx𝒫A|AxFinx=yx𝒫A|AxFinx=
6 ssrab2 x𝒫A|AxFinx=𝒫A
7 sspwuni x𝒫A|AxFinx=𝒫Ax𝒫A|AxFinx=A
8 6 7 mpbi x𝒫A|AxFinx=A
9 5 8 sstrdi yx𝒫A|AxFinx=yA
10 vuniex yV
11 10 elpw y𝒫AyA
12 9 11 sylibr yx𝒫A|AxFinx=y𝒫A
13 uni0c y=zyz=
14 13 notbii ¬y=¬zyz=
15 rexnal zy¬z=¬zyz=
16 14 15 bitr4i ¬y=zy¬z=
17 ssel2 yx𝒫A|AxFinx=zyzx𝒫A|AxFinx=
18 difeq2 x=zAx=Az
19 18 eleq1d x=zAxFinAzFin
20 eqeq1 x=zx=z=
21 19 20 orbi12d x=zAxFinx=AzFinz=
22 21 elrab zx𝒫A|AxFinx=z𝒫AAzFinz=
23 17 22 sylib yx𝒫A|AxFinx=zyz𝒫AAzFinz=
24 23 simprd yx𝒫A|AxFinx=zyAzFinz=
25 24 ord yx𝒫A|AxFinx=zy¬AzFinz=
26 25 con1d yx𝒫A|AxFinx=zy¬z=AzFin
27 26 imp yx𝒫A|AxFinx=zy¬z=AzFin
28 elssuni zyzy
29 28 sscond zyAyAz
30 ssfi AzFinAyAzAyFin
31 29 30 sylan2 AzFinzyAyFin
32 31 expcom zyAzFinAyFin
33 32 ad2antlr yx𝒫A|AxFinx=zy¬z=AzFinAyFin
34 27 33 mpd yx𝒫A|AxFinx=zy¬z=AyFin
35 34 rexlimdva2 yx𝒫A|AxFinx=zy¬z=AyFin
36 16 35 biimtrid yx𝒫A|AxFinx=¬y=AyFin
37 36 con1d yx𝒫A|AxFinx=¬AyFiny=
38 37 orrd yx𝒫A|AxFinx=AyFiny=
39 4 12 38 elrabd yx𝒫A|AxFinx=yx𝒫A|AxFinx=
40 39 ax-gen yyx𝒫A|AxFinx=yx𝒫A|AxFinx=
41 ssinss1 yAyzA
42 vex yV
43 42 elpw y𝒫AyA
44 42 inex1 yzV
45 44 elpw yz𝒫AyzA
46 41 43 45 3imtr4i y𝒫Ayz𝒫A
47 46 ad2antrr y𝒫AAyFiny=z𝒫AAzFinz=yz𝒫A
48 difindi Ayz=AyAz
49 unfi AyFinAzFinAyAzFin
50 48 49 eqeltrid AyFinAzFinAyzFin
51 50 orcd AyFinAzFinAyzFinyz=
52 ineq1 y=yz=z
53 0in z=
54 52 53 eqtrdi y=yz=
55 54 olcd y=AyzFinyz=
56 ineq2 z=yz=y
57 in0 y=
58 56 57 eqtrdi z=yz=
59 58 olcd z=AyzFinyz=
60 51 55 59 ccase2 AyFiny=AzFinz=AyzFinyz=
61 60 ad2ant2l y𝒫AAyFiny=z𝒫AAzFinz=AyzFinyz=
62 47 61 jca y𝒫AAyFiny=z𝒫AAzFinz=yz𝒫AAyzFinyz=
63 difeq2 x=yAx=Ay
64 63 eleq1d x=yAxFinAyFin
65 eqeq1 x=yx=y=
66 64 65 orbi12d x=yAxFinx=AyFiny=
67 66 elrab yx𝒫A|AxFinx=y𝒫AAyFiny=
68 67 22 anbi12i yx𝒫A|AxFinx=zx𝒫A|AxFinx=y𝒫AAyFiny=z𝒫AAzFinz=
69 difeq2 x=yzAx=Ayz
70 69 eleq1d x=yzAxFinAyzFin
71 eqeq1 x=yzx=yz=
72 70 71 orbi12d x=yzAxFinx=AyzFinyz=
73 72 elrab yzx𝒫A|AxFinx=yz𝒫AAyzFinyz=
74 62 68 73 3imtr4i yx𝒫A|AxFinx=zx𝒫A|AxFinx=yzx𝒫A|AxFinx=
75 74 rgen2 yx𝒫A|AxFinx=zx𝒫A|AxFinx=yzx𝒫A|AxFinx=
76 40 75 pm3.2i yyx𝒫A|AxFinx=yx𝒫A|AxFinx=yx𝒫A|AxFinx=zx𝒫A|AxFinx=yzx𝒫A|AxFinx=
77 pwexg AV𝒫AV
78 rabexg 𝒫AVx𝒫A|AxFinx=V
79 istopg x𝒫A|AxFinx=Vx𝒫A|AxFinx=Topyyx𝒫A|AxFinx=yx𝒫A|AxFinx=yx𝒫A|AxFinx=zx𝒫A|AxFinx=yzx𝒫A|AxFinx=
80 77 78 79 3syl AVx𝒫A|AxFinx=Topyyx𝒫A|AxFinx=yx𝒫A|AxFinx=yx𝒫A|AxFinx=zx𝒫A|AxFinx=yzx𝒫A|AxFinx=
81 76 80 mpbiri AVx𝒫A|AxFinx=Top
82 difeq2 x=AAx=AA
83 difid AA=
84 82 83 eqtrdi x=AAx=
85 84 eleq1d x=AAxFinFin
86 eqeq1 x=Ax=A=
87 85 86 orbi12d x=AAxFinx=FinA=
88 pwidg AVA𝒫A
89 0fin Fin
90 89 orci FinA=
91 90 a1i AVFinA=
92 87 88 91 elrabd AVAx𝒫A|AxFinx=
93 elssuni Ax𝒫A|AxFinx=Ax𝒫A|AxFinx=
94 92 93 syl AVAx𝒫A|AxFinx=
95 8 a1i AVx𝒫A|AxFinx=A
96 94 95 eqssd AVA=x𝒫A|AxFinx=
97 istopon x𝒫A|AxFinx=TopOnAx𝒫A|AxFinx=TopA=x𝒫A|AxFinx=
98 81 96 97 sylanbrc AVx𝒫A|AxFinx=TopOnA