Metamath Proof Explorer


Theorem fdvposle

Description: Functions with a nonnegative derivative, i.e. monotonously growing functions, preserve ordering. (Contributed by Thierry Arnoux, 20-Dec-2021)

Ref Expression
Hypotheses fdvposlt.d E=CD
fdvposlt.a φAE
fdvposlt.b φBE
fdvposlt.f φF:E
fdvposlt.c φF:Ecn
fdvposle.le φAB
fdvposle.1 φxAB0Fx
Assertion fdvposle φFAFB

Proof

Step Hyp Ref Expression
1 fdvposlt.d E=CD
2 fdvposlt.a φAE
3 fdvposlt.b φBE
4 fdvposlt.f φF:E
5 fdvposlt.c φF:Ecn
6 fdvposle.le φAB
7 fdvposle.1 φxAB0Fx
8 ioossicc ABAB
9 8 a1i φABAB
10 ioombl ABdomvol
11 10 a1i φABdomvol
12 cncff F:EcnF:E
13 5 12 syl φF:E
14 13 adantr φxABF:E
15 1 2 3 fct2relem φABE
16 15 sselda φxABxE
17 14 16 ffvelcdmd φxABFx
18 ioossre CD
19 1 18 eqsstri E
20 19 2 sselid φA
21 19 3 sselid φB
22 ax-resscn
23 ssid
24 cncfss ABcnABcn
25 22 23 24 mp2an ABcnABcn
26 13 15 feqresmpt φFAB=xABFx
27 rescncf ABEF:EcnFAB:ABcn
28 15 5 27 sylc φFAB:ABcn
29 26 28 eqeltrrd φxABFx:ABcn
30 25 29 sselid φxABFx:ABcn
31 cniccibl ABxABFx:ABcnxABFx𝐿1
32 20 21 30 31 syl3anc φxABFx𝐿1
33 9 11 17 32 iblss φxABFx𝐿1
34 13 adantr φxABF:E
35 9 sselda φxABxAB
36 35 16 syldan φxABxE
37 34 36 ffvelcdmd φxABFx
38 33 37 7 itgge0 φ0ABFxdx
39 fss F:EF:E
40 4 22 39 sylancl φF:E
41 cncfss EcnEcn
42 22 23 41 mp2an EcnEcn
43 42 5 sselid φF:Ecn
44 1 2 3 6 40 43 ftc2re φABFxdx=FBFA
45 38 44 breqtrd φ0FBFA
46 4 3 ffvelcdmd φFB
47 4 2 ffvelcdmd φFA
48 46 47 subge0d φ0FBFAFAFB
49 45 48 mpbid φFAFB