Metamath Proof Explorer


Theorem fmlaomn0

Description: The empty set is not a Godel formula of any height. (Contributed by AV, 21-Oct-2023)

Ref Expression
Assertion fmlaomn0 NωFmlaN

Proof

Step Hyp Ref Expression
1 fveq2 x=Fmlax=Fmla
2 1 eleq2d x=FmlaxFmla
3 2 notbid x=¬Fmlax¬Fmla
4 fveq2 x=yFmlax=Fmlay
5 4 eleq2d x=yFmlaxFmlay
6 5 notbid x=y¬Fmlax¬Fmlay
7 fveq2 x=sucyFmlax=Fmlasucy
8 7 eleq2d x=sucyFmlaxFmlasucy
9 8 notbid x=sucy¬Fmlax¬Fmlasucy
10 fveq2 x=NFmlax=FmlaN
11 10 eleq2d x=NFmlaxFmlaN
12 11 notbid x=N¬Fmlax¬FmlaN
13 0ex V
14 opex ijV
15 13 14 pm3.2i VijV
16 15 a1i iωjωVijV
17 necom ijij
18 opnz ijVijV
19 17 18 bitri ijVijV
20 16 19 sylibr iωjωij
21 20 neneqd iωjω¬=ij
22 goel iωjωi𝑔j=ij
23 22 eqeq2d iωjω=i𝑔j=ij
24 21 23 mtbird iωjω¬=i𝑔j
25 24 rgen2 iωjω¬=i𝑔j
26 ralnex2 iωjω¬=i𝑔j¬iωjω=i𝑔j
27 25 26 mpbi ¬iωjω=i𝑔j
28 27 intnan ¬Viωjω=i𝑔j
29 fmla0 Fmla=xV|iωjωx=i𝑔j
30 29 eleq2i FmlaxV|iωjωx=i𝑔j
31 eqeq1 x=x=i𝑔j=i𝑔j
32 31 2rexbidv x=iωjωx=i𝑔jiωjω=i𝑔j
33 32 elrab xV|iωjωx=i𝑔jViωjω=i𝑔j
34 30 33 bitri FmlaViωjω=i𝑔j
35 28 34 mtbir ¬Fmla
36 simpr yω¬Fmlay¬Fmlay
37 1oex 1𝑜V
38 opex uvV
39 37 38 opnzi 1𝑜uv
40 39 nesymi ¬=1𝑜uv
41 gonafv uFmlayvFmlayu𝑔v=1𝑜uv
42 41 adantll yωuFmlayvFmlayu𝑔v=1𝑜uv
43 42 eqeq2d yωuFmlayvFmlay=u𝑔v=1𝑜uv
44 40 43 mtbiri yωuFmlayvFmlay¬=u𝑔v
45 44 ralrimiva yωuFmlayvFmlay¬=u𝑔v
46 2oex 2𝑜V
47 opex iuV
48 46 47 opnzi 2𝑜iu
49 48 nesymi ¬=2𝑜iu
50 df-goal 𝑔iu=2𝑜iu
51 50 eqeq2i =𝑔iu=2𝑜iu
52 49 51 mtbir ¬=𝑔iu
53 52 a1i yωuFmlayiω¬=𝑔iu
54 53 ralrimiva yωuFmlayiω¬=𝑔iu
55 45 54 jca yωuFmlayvFmlay¬=u𝑔viω¬=𝑔iu
56 55 ralrimiva yωuFmlayvFmlay¬=u𝑔viω¬=𝑔iu
57 56 adantr yω¬FmlayuFmlayvFmlay¬=u𝑔viω¬=𝑔iu
58 ralnex vFmlay¬=u𝑔v¬vFmlay=u𝑔v
59 ralnex iω¬=𝑔iu¬iω=𝑔iu
60 58 59 anbi12i vFmlay¬=u𝑔viω¬=𝑔iu¬vFmlay=u𝑔v¬iω=𝑔iu
61 ioran ¬vFmlay=u𝑔viω=𝑔iu¬vFmlay=u𝑔v¬iω=𝑔iu
62 60 61 bitr4i vFmlay¬=u𝑔viω¬=𝑔iu¬vFmlay=u𝑔viω=𝑔iu
63 62 ralbii uFmlayvFmlay¬=u𝑔viω¬=𝑔iuuFmlay¬vFmlay=u𝑔viω=𝑔iu
64 ralnex uFmlay¬vFmlay=u𝑔viω=𝑔iu¬uFmlayvFmlay=u𝑔viω=𝑔iu
65 63 64 bitri uFmlayvFmlay¬=u𝑔viω¬=𝑔iu¬uFmlayvFmlay=u𝑔viω=𝑔iu
66 57 65 sylib yω¬Fmlay¬uFmlayvFmlay=u𝑔viω=𝑔iu
67 ioran ¬FmlayuFmlayvFmlay=u𝑔viω=𝑔iu¬Fmlay¬uFmlayvFmlay=u𝑔viω=𝑔iu
68 36 66 67 sylanbrc yω¬Fmlay¬FmlayuFmlayvFmlay=u𝑔viω=𝑔iu
69 fmlasuc yωFmlasucy=Fmlayx|uFmlayvFmlayx=u𝑔viωx=𝑔iu
70 69 eleq2d yωFmlasucyFmlayx|uFmlayvFmlayx=u𝑔viωx=𝑔iu
71 elun Fmlayx|uFmlayvFmlayx=u𝑔viωx=𝑔iuFmlayx|uFmlayvFmlayx=u𝑔viωx=𝑔iu
72 eqeq1 x=x=u𝑔v=u𝑔v
73 72 rexbidv x=vFmlayx=u𝑔vvFmlay=u𝑔v
74 eqeq1 x=x=𝑔iu=𝑔iu
75 74 rexbidv x=iωx=𝑔iuiω=𝑔iu
76 73 75 orbi12d x=vFmlayx=u𝑔viωx=𝑔iuvFmlay=u𝑔viω=𝑔iu
77 76 rexbidv x=uFmlayvFmlayx=u𝑔viωx=𝑔iuuFmlayvFmlay=u𝑔viω=𝑔iu
78 13 77 elab x|uFmlayvFmlayx=u𝑔viωx=𝑔iuuFmlayvFmlay=u𝑔viω=𝑔iu
79 78 orbi2i Fmlayx|uFmlayvFmlayx=u𝑔viωx=𝑔iuFmlayuFmlayvFmlay=u𝑔viω=𝑔iu
80 71 79 bitri Fmlayx|uFmlayvFmlayx=u𝑔viωx=𝑔iuFmlayuFmlayvFmlay=u𝑔viω=𝑔iu
81 70 80 bitrdi yωFmlasucyFmlayuFmlayvFmlay=u𝑔viω=𝑔iu
82 81 adantr yω¬FmlayFmlasucyFmlayuFmlayvFmlay=u𝑔viω=𝑔iu
83 68 82 mtbird yω¬Fmlay¬Fmlasucy
84 83 ex yω¬Fmlay¬Fmlasucy
85 3 6 9 12 35 84 finds Nω¬FmlaN
86 df-nel FmlaN¬FmlaN
87 85 86 sylibr NωFmlaN