Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Godel-sets of formulas - part 1
fmlaomn0
Next ⟩
fmlan0
Metamath Proof Explorer
Ascii
Unicode
Theorem
fmlaomn0
Description:
The empty set is not a Godel formula of any height.
(Contributed by
AV
, 21-Oct-2023)
Ref
Expression
Assertion
fmlaomn0
ω
⊢
N
∈
ω
→
∅
∉
Fmla
N
Proof
Step
Hyp
Ref
Expression
1
fveq2
⊢
x
=
∅
→
Fmla
x
=
Fmla
∅
2
1
eleq2d
⊢
x
=
∅
→
∅
∈
Fmla
x
↔
∅
∈
Fmla
∅
3
2
notbid
⊢
x
=
∅
→
¬
∅
∈
Fmla
x
↔
¬
∅
∈
Fmla
∅
4
fveq2
⊢
x
=
y
→
Fmla
x
=
Fmla
y
5
4
eleq2d
⊢
x
=
y
→
∅
∈
Fmla
x
↔
∅
∈
Fmla
y
6
5
notbid
⊢
x
=
y
→
¬
∅
∈
Fmla
x
↔
¬
∅
∈
Fmla
y
7
fveq2
⊢
x
=
suc
y
→
Fmla
x
=
Fmla
suc
y
8
7
eleq2d
⊢
x
=
suc
y
→
∅
∈
Fmla
x
↔
∅
∈
Fmla
suc
y
9
8
notbid
⊢
x
=
suc
y
→
¬
∅
∈
Fmla
x
↔
¬
∅
∈
Fmla
suc
y
10
fveq2
⊢
x
=
N
→
Fmla
x
=
Fmla
N
11
10
eleq2d
⊢
x
=
N
→
∅
∈
Fmla
x
↔
∅
∈
Fmla
N
12
11
notbid
⊢
x
=
N
→
¬
∅
∈
Fmla
x
↔
¬
∅
∈
Fmla
N
13
0ex
⊢
∅
∈
V
14
opex
⊢
i
j
∈
V
15
13
14
pm3.2i
⊢
∅
∈
V
∧
i
j
∈
V
16
15
a1i
ω
ω
⊢
i
∈
ω
∧
j
∈
ω
→
∅
∈
V
∧
i
j
∈
V
17
necom
⊢
∅
≠
∅
i
j
↔
∅
i
j
≠
∅
18
opnz
⊢
∅
i
j
≠
∅
↔
∅
∈
V
∧
i
j
∈
V
19
17
18
bitri
⊢
∅
≠
∅
i
j
↔
∅
∈
V
∧
i
j
∈
V
20
16
19
sylibr
ω
ω
⊢
i
∈
ω
∧
j
∈
ω
→
∅
≠
∅
i
j
21
20
neneqd
ω
ω
⊢
i
∈
ω
∧
j
∈
ω
→
¬
∅
=
∅
i
j
22
goel
ω
ω
⊢
i
∈
ω
∧
j
∈
ω
→
i
∈
𝑔
j
=
∅
i
j
23
22
eqeq2d
ω
ω
⊢
i
∈
ω
∧
j
∈
ω
→
∅
=
i
∈
𝑔
j
↔
∅
=
∅
i
j
24
21
23
mtbird
ω
ω
⊢
i
∈
ω
∧
j
∈
ω
→
¬
∅
=
i
∈
𝑔
j
25
24
rgen2
ω
ω
⊢
∀
i
∈
ω
∀
j
∈
ω
¬
∅
=
i
∈
𝑔
j
26
ralnex2
ω
ω
ω
ω
⊢
∀
i
∈
ω
∀
j
∈
ω
¬
∅
=
i
∈
𝑔
j
↔
¬
∃
i
∈
ω
∃
j
∈
ω
∅
=
i
∈
𝑔
j
27
25
26
mpbi
ω
ω
⊢
¬
∃
i
∈
ω
∃
j
∈
ω
∅
=
i
∈
𝑔
j
28
27
intnan
ω
ω
⊢
¬
∅
∈
V
∧
∃
i
∈
ω
∃
j
∈
ω
∅
=
i
∈
𝑔
j
29
fmla0
ω
ω
⊢
Fmla
∅
=
x
∈
V
|
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
30
29
eleq2i
ω
ω
⊢
∅
∈
Fmla
∅
↔
∅
∈
x
∈
V
|
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
31
eqeq1
⊢
x
=
∅
→
x
=
i
∈
𝑔
j
↔
∅
=
i
∈
𝑔
j
32
31
2rexbidv
ω
ω
ω
ω
⊢
x
=
∅
→
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
↔
∃
i
∈
ω
∃
j
∈
ω
∅
=
i
∈
𝑔
j
33
32
elrab
ω
ω
ω
ω
⊢
∅
∈
x
∈
V
|
∃
i
∈
ω
∃
j
∈
ω
x
=
i
∈
𝑔
j
↔
∅
∈
V
∧
∃
i
∈
ω
∃
j
∈
ω
∅
=
i
∈
𝑔
j
34
30
33
bitri
ω
ω
⊢
∅
∈
Fmla
∅
↔
∅
∈
V
∧
∃
i
∈
ω
∃
j
∈
ω
∅
=
i
∈
𝑔
j
35
28
34
mtbir
⊢
¬
∅
∈
Fmla
∅
36
simpr
ω
⊢
y
∈
ω
∧
¬
∅
∈
Fmla
y
→
¬
∅
∈
Fmla
y
37
1oex
⊢
1
𝑜
∈
V
38
opex
⊢
u
v
∈
V
39
37
38
opnzi
⊢
1
𝑜
u
v
≠
∅
40
39
nesymi
⊢
¬
∅
=
1
𝑜
u
v
41
gonafv
⊢
u
∈
Fmla
y
∧
v
∈
Fmla
y
→
u
⊼
𝑔
v
=
1
𝑜
u
v
42
41
adantll
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
∧
v
∈
Fmla
y
→
u
⊼
𝑔
v
=
1
𝑜
u
v
43
42
eqeq2d
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
∧
v
∈
Fmla
y
→
∅
=
u
⊼
𝑔
v
↔
∅
=
1
𝑜
u
v
44
40
43
mtbiri
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
∧
v
∈
Fmla
y
→
¬
∅
=
u
⊼
𝑔
v
45
44
ralrimiva
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
→
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
46
2oex
⊢
2
𝑜
∈
V
47
opex
⊢
i
u
∈
V
48
46
47
opnzi
⊢
2
𝑜
i
u
≠
∅
49
48
nesymi
⊢
¬
∅
=
2
𝑜
i
u
50
df-goal
⊢
∀
𝑔
i
u
=
2
𝑜
i
u
51
50
eqeq2i
⊢
∅
=
∀
𝑔
i
u
↔
∅
=
2
𝑜
i
u
52
49
51
mtbir
⊢
¬
∅
=
∀
𝑔
i
u
53
52
a1i
ω
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
∧
i
∈
ω
→
¬
∅
=
∀
𝑔
i
u
54
53
ralrimiva
ω
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
→
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
55
45
54
jca
ω
ω
⊢
y
∈
ω
∧
u
∈
Fmla
y
→
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
56
55
ralrimiva
ω
ω
⊢
y
∈
ω
→
∀
u
∈
Fmla
y
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
57
56
adantr
ω
ω
⊢
y
∈
ω
∧
¬
∅
∈
Fmla
y
→
∀
u
∈
Fmla
y
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
58
ralnex
⊢
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
↔
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
59
ralnex
ω
ω
⊢
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
↔
¬
∃
i
∈
ω
∅
=
∀
𝑔
i
u
60
58
59
anbi12i
ω
ω
⊢
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
↔
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∧
¬
∃
i
∈
ω
∅
=
∀
𝑔
i
u
61
ioran
ω
ω
⊢
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
↔
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∧
¬
∃
i
∈
ω
∅
=
∀
𝑔
i
u
62
60
61
bitr4i
ω
ω
⊢
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
↔
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
63
62
ralbii
ω
ω
⊢
∀
u
∈
Fmla
y
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
↔
∀
u
∈
Fmla
y
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
64
ralnex
ω
ω
⊢
∀
u
∈
Fmla
y
¬
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
↔
¬
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
65
63
64
bitri
ω
ω
⊢
∀
u
∈
Fmla
y
∀
v
∈
Fmla
y
¬
∅
=
u
⊼
𝑔
v
∧
∀
i
∈
ω
¬
∅
=
∀
𝑔
i
u
↔
¬
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
66
57
65
sylib
ω
ω
⊢
y
∈
ω
∧
¬
∅
∈
Fmla
y
→
¬
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
67
ioran
ω
ω
⊢
¬
∅
∈
Fmla
y
∨
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
↔
¬
∅
∈
Fmla
y
∧
¬
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
68
36
66
67
sylanbrc
ω
ω
⊢
y
∈
ω
∧
¬
∅
∈
Fmla
y
→
¬
∅
∈
Fmla
y
∨
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
69
fmlasuc
ω
ω
⊢
y
∈
ω
→
Fmla
suc
y
=
Fmla
y
∪
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
70
69
eleq2d
ω
ω
⊢
y
∈
ω
→
∅
∈
Fmla
suc
y
↔
∅
∈
Fmla
y
∪
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
71
elun
ω
ω
⊢
∅
∈
Fmla
y
∪
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∅
∈
Fmla
y
∨
∅
∈
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
72
eqeq1
⊢
x
=
∅
→
x
=
u
⊼
𝑔
v
↔
∅
=
u
⊼
𝑔
v
73
72
rexbidv
⊢
x
=
∅
→
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
↔
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
74
eqeq1
⊢
x
=
∅
→
x
=
∀
𝑔
i
u
↔
∅
=
∀
𝑔
i
u
75
74
rexbidv
ω
ω
⊢
x
=
∅
→
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∃
i
∈
ω
∅
=
∀
𝑔
i
u
76
73
75
orbi12d
ω
ω
⊢
x
=
∅
→
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
77
76
rexbidv
ω
ω
⊢
x
=
∅
→
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
78
13
77
elab
ω
ω
⊢
∅
∈
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
79
78
orbi2i
ω
ω
⊢
∅
∈
Fmla
y
∨
∅
∈
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∅
∈
Fmla
y
∨
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
80
71
79
bitri
ω
ω
⊢
∅
∈
Fmla
y
∪
x
|
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
x
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
x
=
∀
𝑔
i
u
↔
∅
∈
Fmla
y
∨
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
81
70
80
bitrdi
ω
ω
⊢
y
∈
ω
→
∅
∈
Fmla
suc
y
↔
∅
∈
Fmla
y
∨
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
82
81
adantr
ω
ω
⊢
y
∈
ω
∧
¬
∅
∈
Fmla
y
→
∅
∈
Fmla
suc
y
↔
∅
∈
Fmla
y
∨
∃
u
∈
Fmla
y
∃
v
∈
Fmla
y
∅
=
u
⊼
𝑔
v
∨
∃
i
∈
ω
∅
=
∀
𝑔
i
u
83
68
82
mtbird
ω
⊢
y
∈
ω
∧
¬
∅
∈
Fmla
y
→
¬
∅
∈
Fmla
suc
y
84
83
ex
ω
⊢
y
∈
ω
→
¬
∅
∈
Fmla
y
→
¬
∅
∈
Fmla
suc
y
85
3
6
9
12
35
84
finds
ω
⊢
N
∈
ω
→
¬
∅
∈
Fmla
N
86
df-nel
⊢
∅
∉
Fmla
N
↔
¬
∅
∈
Fmla
N
87
85
86
sylibr
ω
⊢
N
∈
ω
→
∅
∉
Fmla
N