Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension)
Fermat numbers
fmtnofac2lem
Next ⟩
fmtnofac2
Metamath Proof Explorer
Ascii
Unicode
Theorem
fmtnofac2lem
Description:
Lemma for
fmtnofac2
(Induction step).
(Contributed by
AV
, 30-Jul-2021)
Ref
Expression
Assertion
fmtnofac2lem
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
N
∈
ℤ
≥
2
∧
y
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
Proof
Step
Hyp
Ref
Expression
1
eluzelz
⊢
y
∈
ℤ
≥
2
→
y
∈
ℤ
2
1
adantr
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
→
y
∈
ℤ
3
eluzelz
⊢
z
∈
ℤ
≥
2
→
z
∈
ℤ
4
3
adantl
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
→
z
∈
ℤ
5
eluzge2nn0
⊢
N
∈
ℤ
≥
2
→
N
∈
ℕ
0
6
fmtnonn
⊢
N
∈
ℕ
0
→
FermatNo
N
∈
ℕ
7
6
nnzd
⊢
N
∈
ℕ
0
→
FermatNo
N
∈
ℤ
8
5
7
syl
⊢
N
∈
ℤ
≥
2
→
FermatNo
N
∈
ℤ
9
muldvds2
⊢
y
∈
ℤ
∧
z
∈
ℤ
∧
FermatNo
N
∈
ℤ
→
y
z
∥
FermatNo
N
→
z
∥
FermatNo
N
10
2
4
8
9
syl2an3an
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
y
z
∥
FermatNo
N
→
z
∥
FermatNo
N
11
muldvds1
⊢
y
∈
ℤ
∧
z
∈
ℤ
∧
FermatNo
N
∈
ℤ
→
y
z
∥
FermatNo
N
→
y
∥
FermatNo
N
12
2
4
8
11
syl2an3an
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
y
z
∥
FermatNo
N
→
y
∥
FermatNo
N
13
pm2.27
⊢
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
14
13
ad2ant2lr
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
∧
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
15
pm2.27
⊢
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
16
15
ad2ant2l
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
∧
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
17
oveq1
⊢
k
=
m
→
k
2
N
+
2
=
m
2
N
+
2
18
17
oveq1d
⊢
k
=
m
→
k
2
N
+
2
+
1
=
m
2
N
+
2
+
1
19
18
eqeq2d
⊢
k
=
m
→
y
=
k
2
N
+
2
+
1
↔
y
=
m
2
N
+
2
+
1
20
19
cbvrexvw
⊢
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
↔
∃
m
∈
ℕ
0
y
=
m
2
N
+
2
+
1
21
oveq1
⊢
k
=
n
→
k
2
N
+
2
=
n
2
N
+
2
22
21
oveq1d
⊢
k
=
n
→
k
2
N
+
2
+
1
=
n
2
N
+
2
+
1
23
22
eqeq2d
⊢
k
=
n
→
z
=
k
2
N
+
2
+
1
↔
z
=
n
2
N
+
2
+
1
24
23
cbvrexvw
⊢
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
↔
∃
n
∈
ℕ
0
z
=
n
2
N
+
2
+
1
25
simpl
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℕ
0
26
25
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℕ
0
27
2nn0
⊢
2
∈
ℕ
0
28
27
a1i
⊢
N
∈
ℤ
≥
2
→
2
∈
ℕ
0
29
5
28
nn0addcld
⊢
N
∈
ℤ
≥
2
→
N
+
2
∈
ℕ
0
30
28
29
nn0expcld
⊢
N
∈
ℤ
≥
2
→
2
N
+
2
∈
ℕ
0
31
30
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
2
N
+
2
∈
ℕ
0
32
26
31
nn0mulcld
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
∈
ℕ
0
33
simpr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
n
∈
ℕ
0
34
33
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
n
∈
ℕ
0
35
32
34
nn0mulcld
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
n
∈
ℕ
0
36
nn0addcl
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
+
n
∈
ℕ
0
37
36
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
+
n
∈
ℕ
0
38
35
37
nn0addcld
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
n
+
m
+
n
∈
ℕ
0
39
oveq1
⊢
k
=
m
2
N
+
2
n
+
m
+
n
→
k
2
N
+
2
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
40
39
oveq1d
⊢
k
=
m
2
N
+
2
n
+
m
+
n
→
k
2
N
+
2
+
1
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
41
40
eqeq2d
⊢
k
=
m
2
N
+
2
n
+
m
+
n
→
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
↔
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
42
41
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
=
m
2
N
+
2
n
+
m
+
n
→
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
↔
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
43
eqidd
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
44
38
42
43
rspcedvd
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
∃
k
∈
ℕ
0
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
45
nn0cn
⊢
m
∈
ℕ
0
→
m
∈
ℂ
46
45
adantr
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℂ
47
46
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℂ
48
30
nn0cnd
⊢
N
∈
ℤ
≥
2
→
2
N
+
2
∈
ℂ
49
48
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
2
N
+
2
∈
ℂ
50
47
49
mulcld
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
∈
ℂ
51
33
nn0cnd
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
n
∈
ℂ
52
51
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
n
∈
ℂ
53
52
49
mulcld
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
n
2
N
+
2
∈
ℂ
54
50
53
jca
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
∈
ℂ
∧
n
2
N
+
2
∈
ℂ
55
54
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
∈
ℂ
∧
n
2
N
+
2
∈
ℂ
56
muladd11r
⊢
m
2
N
+
2
∈
ℂ
∧
n
2
N
+
2
∈
ℂ
→
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
+
1
57
55
56
syl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
+
1
58
25
nn0cnd
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℂ
59
58
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℂ
60
59
52
49
3jca
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
∈
ℂ
∧
n
∈
ℂ
∧
2
N
+
2
∈
ℂ
61
60
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
∈
ℂ
∧
n
∈
ℂ
∧
2
N
+
2
∈
ℂ
62
adddir
⊢
m
∈
ℂ
∧
n
∈
ℂ
∧
2
N
+
2
∈
ℂ
→
m
+
n
2
N
+
2
=
m
2
N
+
2
+
n
2
N
+
2
63
61
62
syl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
+
n
2
N
+
2
=
m
2
N
+
2
+
n
2
N
+
2
64
63
eqcomd
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
+
n
2
N
+
2
=
m
+
n
2
N
+
2
65
64
oveq2d
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
=
m
2
N
+
2
n
2
N
+
2
+
m
+
n
2
N
+
2
66
50
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
∈
ℂ
67
52
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
n
∈
ℂ
68
49
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
2
N
+
2
∈
ℂ
69
66
67
68
mulassd
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
2
N
+
2
=
m
2
N
+
2
n
2
N
+
2
70
69
eqcomd
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
2
N
+
2
=
m
2
N
+
2
n
2
N
+
2
71
70
oveq1d
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
=
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
72
50
52
mulcld
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
n
∈
ℂ
73
36
nn0cnd
⊢
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
+
n
∈
ℂ
74
73
adantl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
+
n
∈
ℂ
75
72
74
49
3jca
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
m
2
N
+
2
n
∈
ℂ
∧
m
+
n
∈
ℂ
∧
2
N
+
2
∈
ℂ
76
75
adantr
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
∈
ℂ
∧
m
+
n
∈
ℂ
∧
2
N
+
2
∈
ℂ
77
adddir
⊢
m
2
N
+
2
n
∈
ℂ
∧
m
+
n
∈
ℂ
∧
2
N
+
2
∈
ℂ
→
m
2
N
+
2
n
+
m
+
n
2
N
+
2
=
m
2
N
+
2
n
2
N
+
2
+
m
+
n
2
N
+
2
78
76
77
syl
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
+
m
+
n
2
N
+
2
=
m
2
N
+
2
n
2
N
+
2
+
m
+
n
2
N
+
2
79
65
71
78
3eqtr4d
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
80
79
oveq1d
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
n
2
N
+
2
+
m
2
N
+
2
+
n
2
N
+
2
+
1
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
81
57
80
eqtrd
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
82
81
eqeq1d
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
∧
k
∈
ℕ
0
→
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
↔
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
83
82
rexbidva
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
∃
k
∈
ℕ
0
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
↔
∃
k
∈
ℕ
0
m
2
N
+
2
n
+
m
+
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
84
44
83
mpbird
⊢
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
∃
k
∈
ℕ
0
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
85
84
adantll
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
∃
k
∈
ℕ
0
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
86
oveq12
⊢
y
=
m
2
N
+
2
+
1
∧
z
=
n
2
N
+
2
+
1
→
y
z
=
m
2
N
+
2
+
1
n
2
N
+
2
+
1
87
86
ancoms
⊢
z
=
n
2
N
+
2
+
1
∧
y
=
m
2
N
+
2
+
1
→
y
z
=
m
2
N
+
2
+
1
n
2
N
+
2
+
1
88
87
eqeq1d
⊢
z
=
n
2
N
+
2
+
1
∧
y
=
m
2
N
+
2
+
1
→
y
z
=
k
2
N
+
2
+
1
↔
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
89
88
rexbidv
⊢
z
=
n
2
N
+
2
+
1
∧
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
↔
∃
k
∈
ℕ
0
m
2
N
+
2
+
1
n
2
N
+
2
+
1
=
k
2
N
+
2
+
1
90
85
89
syl5ibrcom
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
z
=
n
2
N
+
2
+
1
∧
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
91
90
expd
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
z
=
n
2
N
+
2
+
1
→
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
92
91
anassrs
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
∧
n
∈
ℕ
0
→
z
=
n
2
N
+
2
+
1
→
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
93
92
rexlimdva
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
→
∃
n
∈
ℕ
0
z
=
n
2
N
+
2
+
1
→
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
94
24
93
biimtrid
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
95
94
com23
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
m
∈
ℕ
0
→
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
96
95
rexlimdva
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
∃
m
∈
ℕ
0
y
=
m
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
97
20
96
biimtrid
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
98
97
impd
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
99
98
adantr
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
100
14
16
99
syl2and
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
∧
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
101
100
exp32
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
y
∥
FermatNo
N
→
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
102
12
101
syld
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
y
z
∥
FermatNo
N
→
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
103
10
102
mpdd
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
∧
N
∈
ℤ
≥
2
→
y
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
104
103
expimpd
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
→
N
∈
ℤ
≥
2
∧
y
z
∥
FermatNo
N
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1
105
104
com23
⊢
y
∈
ℤ
≥
2
∧
z
∈
ℤ
≥
2
→
N
∈
ℤ
≥
2
∧
y
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
=
k
2
N
+
2
+
1
∧
N
∈
ℤ
≥
2
∧
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
z
=
k
2
N
+
2
+
1
→
N
∈
ℤ
≥
2
∧
y
z
∥
FermatNo
N
→
∃
k
∈
ℕ
0
y
z
=
k
2
N
+
2
+
1