Metamath Proof Explorer


Theorem fmtnofac2lem

Description: Lemma for fmtnofac2 (Induction step). (Contributed by AV, 30-Jul-2021)

Ref Expression
Assertion fmtnofac2lem y2z2N2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1N2yzFermatNoNk0yz=k2N+2+1

Proof

Step Hyp Ref Expression
1 eluzelz y2y
2 1 adantr y2z2y
3 eluzelz z2z
4 3 adantl y2z2z
5 eluzge2nn0 N2N0
6 fmtnonn N0FermatNoN
7 6 nnzd N0FermatNoN
8 5 7 syl N2FermatNoN
9 muldvds2 yzFermatNoNyzFermatNoNzFermatNoN
10 2 4 8 9 syl2an3an y2z2N2yzFermatNoNzFermatNoN
11 muldvds1 yzFermatNoNyzFermatNoNyFermatNoN
12 2 4 8 11 syl2an3an y2z2N2yzFermatNoNyFermatNoN
13 pm2.27 N2yFermatNoNN2yFermatNoNk0y=k2N+2+1k0y=k2N+2+1
14 13 ad2ant2lr y2z2N2yFermatNoNzFermatNoNN2yFermatNoNk0y=k2N+2+1k0y=k2N+2+1
15 pm2.27 N2zFermatNoNN2zFermatNoNk0z=k2N+2+1k0z=k2N+2+1
16 15 ad2ant2l y2z2N2yFermatNoNzFermatNoNN2zFermatNoNk0z=k2N+2+1k0z=k2N+2+1
17 oveq1 k=mk2N+2=m2N+2
18 17 oveq1d k=mk2N+2+1=m2N+2+1
19 18 eqeq2d k=my=k2N+2+1y=m2N+2+1
20 19 cbvrexvw k0y=k2N+2+1m0y=m2N+2+1
21 oveq1 k=nk2N+2=n2N+2
22 21 oveq1d k=nk2N+2+1=n2N+2+1
23 22 eqeq2d k=nz=k2N+2+1z=n2N+2+1
24 23 cbvrexvw k0z=k2N+2+1n0z=n2N+2+1
25 simpl m0n0m0
26 25 adantl N2m0n0m0
27 2nn0 20
28 27 a1i N220
29 5 28 nn0addcld N2N+20
30 28 29 nn0expcld N22N+20
31 30 adantr N2m0n02N+20
32 26 31 nn0mulcld N2m0n0m2N+20
33 simpr m0n0n0
34 33 adantl N2m0n0n0
35 32 34 nn0mulcld N2m0n0m2N+2n0
36 nn0addcl m0n0m+n0
37 36 adantl N2m0n0m+n0
38 35 37 nn0addcld N2m0n0m2N+2n+m+n0
39 oveq1 k=m2N+2n+m+nk2N+2=m2N+2n+m+n2N+2
40 39 oveq1d k=m2N+2n+m+nk2N+2+1=m2N+2n+m+n2N+2+1
41 40 eqeq2d k=m2N+2n+m+nm2N+2n+m+n2N+2+1=k2N+2+1m2N+2n+m+n2N+2+1=m2N+2n+m+n2N+2+1
42 41 adantl N2m0n0k=m2N+2n+m+nm2N+2n+m+n2N+2+1=k2N+2+1m2N+2n+m+n2N+2+1=m2N+2n+m+n2N+2+1
43 eqidd N2m0n0m2N+2n+m+n2N+2+1=m2N+2n+m+n2N+2+1
44 38 42 43 rspcedvd N2m0n0k0m2N+2n+m+n2N+2+1=k2N+2+1
45 nn0cn m0m
46 45 adantr m0n0m
47 46 adantl N2m0n0m
48 30 nn0cnd N22N+2
49 48 adantr N2m0n02N+2
50 47 49 mulcld N2m0n0m2N+2
51 33 nn0cnd m0n0n
52 51 adantl N2m0n0n
53 52 49 mulcld N2m0n0n2N+2
54 50 53 jca N2m0n0m2N+2n2N+2
55 54 adantr N2m0n0k0m2N+2n2N+2
56 muladd11r m2N+2n2N+2m2N+2+1n2N+2+1=m2N+2n2N+2+m2N+2+n2N+2+1
57 55 56 syl N2m0n0k0m2N+2+1n2N+2+1=m2N+2n2N+2+m2N+2+n2N+2+1
58 25 nn0cnd m0n0m
59 58 adantl N2m0n0m
60 59 52 49 3jca N2m0n0mn2N+2
61 60 adantr N2m0n0k0mn2N+2
62 adddir mn2N+2m+n2N+2=m2N+2+n2N+2
63 61 62 syl N2m0n0k0m+n2N+2=m2N+2+n2N+2
64 63 eqcomd N2m0n0k0m2N+2+n2N+2=m+n2N+2
65 64 oveq2d N2m0n0k0m2N+2n2N+2+m2N+2+n2N+2=m2N+2n2N+2+m+n2N+2
66 50 adantr N2m0n0k0m2N+2
67 52 adantr N2m0n0k0n
68 49 adantr N2m0n0k02N+2
69 66 67 68 mulassd N2m0n0k0m2N+2n2N+2=m2N+2n2N+2
70 69 eqcomd N2m0n0k0m2N+2n2N+2=m2N+2n2N+2
71 70 oveq1d N2m0n0k0m2N+2n2N+2+m2N+2+n2N+2=m2N+2n2N+2+m2N+2+n2N+2
72 50 52 mulcld N2m0n0m2N+2n
73 36 nn0cnd m0n0m+n
74 73 adantl N2m0n0m+n
75 72 74 49 3jca N2m0n0m2N+2nm+n2N+2
76 75 adantr N2m0n0k0m2N+2nm+n2N+2
77 adddir m2N+2nm+n2N+2m2N+2n+m+n2N+2=m2N+2n2N+2+m+n2N+2
78 76 77 syl N2m0n0k0m2N+2n+m+n2N+2=m2N+2n2N+2+m+n2N+2
79 65 71 78 3eqtr4d N2m0n0k0m2N+2n2N+2+m2N+2+n2N+2=m2N+2n+m+n2N+2
80 79 oveq1d N2m0n0k0m2N+2n2N+2+m2N+2+n2N+2+1=m2N+2n+m+n2N+2+1
81 57 80 eqtrd N2m0n0k0m2N+2+1n2N+2+1=m2N+2n+m+n2N+2+1
82 81 eqeq1d N2m0n0k0m2N+2+1n2N+2+1=k2N+2+1m2N+2n+m+n2N+2+1=k2N+2+1
83 82 rexbidva N2m0n0k0m2N+2+1n2N+2+1=k2N+2+1k0m2N+2n+m+n2N+2+1=k2N+2+1
84 44 83 mpbird N2m0n0k0m2N+2+1n2N+2+1=k2N+2+1
85 84 adantll y2z2N2m0n0k0m2N+2+1n2N+2+1=k2N+2+1
86 oveq12 y=m2N+2+1z=n2N+2+1yz=m2N+2+1n2N+2+1
87 86 ancoms z=n2N+2+1y=m2N+2+1yz=m2N+2+1n2N+2+1
88 87 eqeq1d z=n2N+2+1y=m2N+2+1yz=k2N+2+1m2N+2+1n2N+2+1=k2N+2+1
89 88 rexbidv z=n2N+2+1y=m2N+2+1k0yz=k2N+2+1k0m2N+2+1n2N+2+1=k2N+2+1
90 85 89 syl5ibrcom y2z2N2m0n0z=n2N+2+1y=m2N+2+1k0yz=k2N+2+1
91 90 expd y2z2N2m0n0z=n2N+2+1y=m2N+2+1k0yz=k2N+2+1
92 91 anassrs y2z2N2m0n0z=n2N+2+1y=m2N+2+1k0yz=k2N+2+1
93 92 rexlimdva y2z2N2m0n0z=n2N+2+1y=m2N+2+1k0yz=k2N+2+1
94 24 93 biimtrid y2z2N2m0k0z=k2N+2+1y=m2N+2+1k0yz=k2N+2+1
95 94 com23 y2z2N2m0y=m2N+2+1k0z=k2N+2+1k0yz=k2N+2+1
96 95 rexlimdva y2z2N2m0y=m2N+2+1k0z=k2N+2+1k0yz=k2N+2+1
97 20 96 biimtrid y2z2N2k0y=k2N+2+1k0z=k2N+2+1k0yz=k2N+2+1
98 97 impd y2z2N2k0y=k2N+2+1k0z=k2N+2+1k0yz=k2N+2+1
99 98 adantr y2z2N2yFermatNoNzFermatNoNk0y=k2N+2+1k0z=k2N+2+1k0yz=k2N+2+1
100 14 16 99 syl2and y2z2N2yFermatNoNzFermatNoNN2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1k0yz=k2N+2+1
101 100 exp32 y2z2N2yFermatNoNzFermatNoNN2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1k0yz=k2N+2+1
102 12 101 syld y2z2N2yzFermatNoNzFermatNoNN2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1k0yz=k2N+2+1
103 10 102 mpdd y2z2N2yzFermatNoNN2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1k0yz=k2N+2+1
104 103 expimpd y2z2N2yzFermatNoNN2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1k0yz=k2N+2+1
105 104 com23 y2z2N2yFermatNoNk0y=k2N+2+1N2zFermatNoNk0z=k2N+2+1N2yzFermatNoNk0yz=k2N+2+1