Metamath Proof Explorer


Theorem fmucnd

Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017)

Ref Expression
Hypotheses fmucnd.1 φUUnifOnX
fmucnd.2 φVUnifOnY
fmucnd.3 φFUuCnV
fmucnd.4 φCCauFilUU
fmucnd.5 D=ranaCFa
Assertion fmucnd φDCauFilUV

Proof

Step Hyp Ref Expression
1 fmucnd.1 φUUnifOnX
2 fmucnd.2 φVUnifOnY
3 fmucnd.3 φFUuCnV
4 fmucnd.4 φCCauFilUU
5 fmucnd.5 D=ranaCFa
6 cfilufbas UUnifOnXCCauFilUUCfBasX
7 1 4 6 syl2anc φCfBasX
8 isucn UUnifOnXVUnifOnYFUuCnVF:XYvVrUxXyXxryFxvFy
9 8 simprbda UUnifOnXVUnifOnYFUuCnVF:XY
10 1 2 3 9 syl21anc φF:XY
11 2 elfvexd φYV
12 5 fbasrn CfBasXF:XYYVDfBasY
13 7 10 11 12 syl3anc φDfBasY
14 simplr φvVaCa×axX,yXFxFy-1vaC
15 eqid Fa=Fa
16 imaeq2 c=aFc=Fa
17 16 rspceeqv aCFa=FacCFa=Fc
18 14 15 17 sylancl φvVaCa×axX,yXFxFy-1vcCFa=Fc
19 imaexg FUuCnVFaV
20 eqid cCFc=cCFc
21 20 elrnmpt FaVFarancCFccCFa=Fc
22 3 19 21 3syl φFarancCFccCFa=Fc
23 22 ad3antrrr φvVaCa×axX,yXFxFy-1vFarancCFccCFa=Fc
24 18 23 mpbird φvVaCa×axX,yXFxFy-1vFarancCFc
25 imaeq2 a=cFa=Fc
26 25 cbvmptv aCFa=cCFc
27 26 rneqi ranaCFa=rancCFc
28 5 27 eqtri D=rancCFc
29 24 28 eleqtrrdi φvVaCa×axX,yXFxFy-1vFaD
30 10 ffnd φFFnX
31 30 ad3antrrr φvVaCa×axX,yXFxFy-1vFFnX
32 fbelss CfBasXaCaX
33 7 32 sylan φaCaX
34 33 ad4ant13 φvVaCa×axX,yXFxFy-1vaX
35 fmucndlem FFnXaXxX,yXFxFya×a=Fa×Fa
36 31 34 35 syl2anc φvVaCa×axX,yXFxFy-1vxX,yXFxFya×a=Fa×Fa
37 eqid xX,yXFxFy=xX,yXFxFy
38 37 mpofun FunxX,yXFxFy
39 funimass2 FunxX,yXFxFya×axX,yXFxFy-1vxX,yXFxFya×av
40 38 39 mpan a×axX,yXFxFy-1vxX,yXFxFya×av
41 40 adantl φvVaCa×axX,yXFxFy-1vxX,yXFxFya×av
42 36 41 eqsstrrd φvVaCa×axX,yXFxFy-1vFa×Fav
43 id b=Fab=Fa
44 43 sqxpeqd b=Fab×b=Fa×Fa
45 44 sseq1d b=Fab×bvFa×Fav
46 45 rspcev FaDFa×FavbDb×bv
47 29 42 46 syl2anc φvVaCa×axX,yXFxFy-1vbDb×bv
48 1 adantr φvVUUnifOnX
49 4 adantr φvVCCauFilUU
50 2 adantr φvVVUnifOnY
51 3 adantr φvVFUuCnV
52 simpr φvVvV
53 nfcv _sFxFy
54 nfcv _tFxFy
55 nfcv _xFsFt
56 nfcv _yFsFt
57 simpl x=sy=tx=s
58 57 fveq2d x=sy=tFx=Fs
59 simpr x=sy=ty=t
60 59 fveq2d x=sy=tFy=Ft
61 58 60 opeq12d x=sy=tFxFy=FsFt
62 53 54 55 56 61 cbvmpo xX,yXFxFy=sX,tXFsFt
63 48 50 51 52 62 ucnprima φvVxX,yXFxFy-1vU
64 cfiluexsm UUnifOnXCCauFilUUxX,yXFxFy-1vUaCa×axX,yXFxFy-1v
65 48 49 63 64 syl3anc φvVaCa×axX,yXFxFy-1v
66 47 65 r19.29a φvVbDb×bv
67 66 ralrimiva φvVbDb×bv
68 iscfilu VUnifOnYDCauFilUVDfBasYvVbDb×bv
69 2 68 syl φDCauFilUVDfBasYvVbDb×bv
70 13 67 69 mpbir2and φDCauFilUV