Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmucnd.1 | |
|
fmucnd.2 | |
||
fmucnd.3 | |
||
fmucnd.4 | |
||
fmucnd.5 | |
||
Assertion | fmucnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmucnd.1 | |
|
2 | fmucnd.2 | |
|
3 | fmucnd.3 | |
|
4 | fmucnd.4 | |
|
5 | fmucnd.5 | |
|
6 | cfilufbas | |
|
7 | 1 4 6 | syl2anc | |
8 | isucn | |
|
9 | 8 | simprbda | |
10 | 1 2 3 9 | syl21anc | |
11 | 2 | elfvexd | |
12 | 5 | fbasrn | |
13 | 7 10 11 12 | syl3anc | |
14 | simplr | |
|
15 | eqid | |
|
16 | imaeq2 | |
|
17 | 16 | rspceeqv | |
18 | 14 15 17 | sylancl | |
19 | imaexg | |
|
20 | eqid | |
|
21 | 20 | elrnmpt | |
22 | 3 19 21 | 3syl | |
23 | 22 | ad3antrrr | |
24 | 18 23 | mpbird | |
25 | imaeq2 | |
|
26 | 25 | cbvmptv | |
27 | 26 | rneqi | |
28 | 5 27 | eqtri | |
29 | 24 28 | eleqtrrdi | |
30 | 10 | ffnd | |
31 | 30 | ad3antrrr | |
32 | fbelss | |
|
33 | 7 32 | sylan | |
34 | 33 | ad4ant13 | |
35 | fmucndlem | |
|
36 | 31 34 35 | syl2anc | |
37 | eqid | |
|
38 | 37 | mpofun | |
39 | funimass2 | |
|
40 | 38 39 | mpan | |
41 | 40 | adantl | |
42 | 36 41 | eqsstrrd | |
43 | id | |
|
44 | 43 | sqxpeqd | |
45 | 44 | sseq1d | |
46 | 45 | rspcev | |
47 | 29 42 46 | syl2anc | |
48 | 1 | adantr | |
49 | 4 | adantr | |
50 | 2 | adantr | |
51 | 3 | adantr | |
52 | simpr | |
|
53 | nfcv | |
|
54 | nfcv | |
|
55 | nfcv | |
|
56 | nfcv | |
|
57 | simpl | |
|
58 | 57 | fveq2d | |
59 | simpr | |
|
60 | 59 | fveq2d | |
61 | 58 60 | opeq12d | |
62 | 53 54 55 56 61 | cbvmpo | |
63 | 48 50 51 52 62 | ucnprima | |
64 | cfiluexsm | |
|
65 | 48 49 63 64 | syl3anc | |
66 | 47 65 | r19.29a | |
67 | 66 | ralrimiva | |
68 | iscfilu | |
|
69 | 2 68 | syl | |
70 | 13 67 69 | mpbir2and | |