Metamath Proof Explorer


Theorem fourierdlem98

Description: F is continuous on the intervals induced by the moved partition V . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem98.f φF:
fourierdlem98.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem98.t T=BA
fourierdlem98.m φM
fourierdlem98.q φQPM
fourierdlem98.fper φxFx+T=Fx
fourierdlem98.qcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem98.c φC
fourierdlem98.d φDC+∞
fourierdlem98.j φJ0..^CDyCD|ky+kTranQ1
fourierdlem98.v V=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
Assertion fourierdlem98 φFVJVJ+1:VJVJ+1cn

Proof

Step Hyp Ref Expression
1 fourierdlem98.f φF:
2 fourierdlem98.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
3 fourierdlem98.t T=BA
4 fourierdlem98.m φM
5 fourierdlem98.q φQPM
6 fourierdlem98.fper φxFx+T=Fx
7 fourierdlem98.qcn φi0..^MFQiQi+1:QiQi+1cn
8 fourierdlem98.c φC
9 fourierdlem98.d φDC+∞
10 fourierdlem98.j φJ0..^CDyCD|ky+kTranQ1
11 fourierdlem98.v V=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
12 ax-resscn
13 12 a1i φ
14 1 13 fssd φF:
15 eqid mp0m|p0=Cpm=Di0..^mpi<pi+1=mp0m|p0=Cpm=Di0..^mpi<pi+1
16 oveq1 z=yz+lT=y+lT
17 16 eleq1d z=yz+lTranQy+lTranQ
18 17 rexbidv z=ylz+lTranQly+lTranQ
19 18 cbvrabv zCD|lz+lTranQ=yCD|ly+lTranQ
20 19 uneq2i CDzCD|lz+lTranQ=CDyCD|ly+lTranQ
21 20 eqcomi CDyCD|ly+lTranQ=CDzCD|lz+lTranQ
22 oveq1 k=lkT=lT
23 22 oveq2d k=ly+kT=y+lT
24 23 eleq1d k=ly+kTranQy+lTranQ
25 24 cbvrexvw ky+kTranQly+lTranQ
26 25 a1i yCDky+kTranQly+lTranQ
27 26 rabbiia yCD|ky+kTranQ=yCD|ly+lTranQ
28 27 uneq2i CDyCD|ky+kTranQ=CDyCD|ly+lTranQ
29 28 fveq2i CDyCD|ky+kTranQ=CDyCD|ly+lTranQ
30 29 oveq1i CDyCD|ky+kTranQ1=CDyCD|ly+lTranQ1
31 oveq1 l=hlT=hT
32 31 oveq2d l=hy+lT=y+hT
33 32 eleq1d l=hy+lTranQy+hTranQ
34 33 cbvrexvw ly+lTranQhy+hTranQ
35 34 a1i yCDly+lTranQhy+hTranQ
36 35 rabbiia yCD|ly+lTranQ=yCD|hy+hTranQ
37 36 uneq2i CDyCD|ly+lTranQ=CDyCD|hy+hTranQ
38 isoeq5 CDyCD|ly+lTranQ=CDyCD|hy+hTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
39 37 38 ax-mp gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
40 39 iotabii ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|hy+hTranQ
41 isoeq1 f=gfIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQgIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
42 41 cbviotavw ιf|fIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ=ιg|gIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
43 40 42 11 3eqtr4ri V=ιf|fIsom<,<0CDyCD|ky+kTranQ1CDyCD|ly+lTranQ
44 id v=xv=x
45 oveq2 v=xBv=Bx
46 45 oveq1d v=xBvT=BxT
47 46 fveq2d v=xBvT=BxT
48 47 oveq1d v=xBvTT=BxTT
49 44 48 oveq12d v=xv+BvTT=x+BxTT
50 49 cbvmptv vv+BvTT=xx+BxTT
51 eqeq1 u=zu=Bz=B
52 id u=zu=z
53 51 52 ifbieq2d u=zifu=BAu=ifz=BAz
54 53 cbvmptv uABifu=BAu=zABifz=BAz
55 eqid VJ+1vv+BvTTVJ+1=VJ+1vv+BvTTVJ+1
56 eqid FuABifu=BAuvv+BvTTVJvv+BvTTVJ+1=FuABifu=BAuvv+BvTTVJvv+BvTTVJ+1
57 eqid zuABifu=BAuvv+BvTTVJ+VJ+1-vv+BvTTVJ+1vv+BvTTVJ+1+VJ+1-vv+BvTTVJ+1FuABifu=BAuvv+BvTTVJvv+BvTTVJ+1zVJ+1vv+BvTTVJ+1=zuABifu=BAuvv+BvTTVJ+VJ+1-vv+BvTTVJ+1vv+BvTTVJ+1+VJ+1-vv+BvTTVJ+1FuABifu=BAuvv+BvTTVJvv+BvTTVJ+1zVJ+1vv+BvTTVJ+1
58 fveq2 i=tQi=Qt
59 58 breq1d i=tQiuABifu=BAuvv+BvTTxQtuABifu=BAuvv+BvTTx
60 59 cbvrabv i0..^M|QiuABifu=BAuvv+BvTTx=t0..^M|QtuABifu=BAuvv+BvTTx
61 fveq2 w=xvv+BvTTw=vv+BvTTx
62 61 fveq2d w=xuABifu=BAuvv+BvTTw=uABifu=BAuvv+BvTTx
63 62 eqcomd w=xuABifu=BAuvv+BvTTx=uABifu=BAuvv+BvTTw
64 63 breq2d w=xQtuABifu=BAuvv+BvTTxQtuABifu=BAuvv+BvTTw
65 64 rabbidv w=xt0..^M|QtuABifu=BAuvv+BvTTx=t0..^M|QtuABifu=BAuvv+BvTTw
66 60 65 eqtr2id w=xt0..^M|QtuABifu=BAuvv+BvTTw=i0..^M|QiuABifu=BAuvv+BvTTx
67 66 supeq1d w=xsupt0..^M|QtuABifu=BAuvv+BvTTw<=supi0..^M|QiuABifu=BAuvv+BvTTx<
68 67 cbvmptv wsupt0..^M|QtuABifu=BAuvv+BvTTw<=xsupi0..^M|QiuABifu=BAuvv+BvTTx<
69 2 3 4 5 14 6 7 8 9 15 21 30 43 50 54 10 55 56 57 68 fourierdlem90 φFVJVJ+1:VJVJ+1cn