Metamath Proof Explorer


Theorem fpwwe2lem5

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
fpwwe2.2 φAV
fpwwe2.3 φxArx×xrWexxFrA
fpwwe2lem8.x φXWR
fpwwe2lem8.y φYWS
fpwwe2lem8.m M=OrdIsoRX
fpwwe2lem8.n N=OrdIsoSY
fpwwe2lem5.1 φBdomM
fpwwe2lem5.2 φBdomN
fpwwe2lem5.3 φMB=NB
Assertion fpwwe2lem5 φCRMBCXCYM-1C=N-1C

Proof

Step Hyp Ref Expression
1 fpwwe2.1 W=xr|xArx×xrWexyx[˙r-1y/u]˙uFru×u=y
2 fpwwe2.2 φAV
3 fpwwe2.3 φxArx×xrWexxFrA
4 fpwwe2lem8.x φXWR
5 fpwwe2lem8.y φYWS
6 fpwwe2lem8.m M=OrdIsoRX
7 fpwwe2lem8.n N=OrdIsoSY
8 fpwwe2lem5.1 φBdomM
9 fpwwe2lem5.2 φBdomN
10 fpwwe2lem5.3 φMB=NB
11 1 2 fpwwe2lem2 φXWRXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
12 4 11 mpbid φXARX×XRWeXyX[˙R-1y/u]˙uFRu×u=y
13 12 simplrd φRX×X
14 13 ssbrd φCRMBCX×XMB
15 brxp CX×XMBCXMBX
16 15 simplbi CX×XMBCX
17 14 16 syl6 φCRMBCX
18 17 imp φCRMBCX
19 imassrn NBranN
20 1 relopabiv RelW
21 20 brrelex1i YWSYV
22 5 21 syl φYV
23 1 2 fpwwe2lem2 φYWSYASY×YSWeYyY[˙S-1y/u]˙uFSu×u=y
24 5 23 mpbid φYASY×YSWeYyY[˙S-1y/u]˙uFSu×u=y
25 24 simprld φSWeY
26 7 oiiso YVSWeYNIsomE,SdomNY
27 22 25 26 syl2anc φNIsomE,SdomNY
28 27 adantr φCRMBNIsomE,SdomNY
29 isof1o NIsomE,SdomNYN:domN1-1 ontoY
30 28 29 syl φCRMBN:domN1-1 ontoY
31 f1ofo N:domN1-1 ontoYN:domNontoY
32 forn N:domNontoYranN=Y
33 30 31 32 3syl φCRMBranN=Y
34 19 33 sseqtrid φCRMBNBY
35 20 brrelex1i XWRXV
36 4 35 syl φXV
37 12 simprld φRWeX
38 6 oiiso XVRWeXMIsomE,RdomMX
39 36 37 38 syl2anc φMIsomE,RdomMX
40 39 adantr φCRMBMIsomE,RdomMX
41 isof1o MIsomE,RdomMXM:domM1-1 ontoX
42 40 41 syl φCRMBM:domM1-1 ontoX
43 f1ocnvfv2 M:domM1-1 ontoXCXMM-1C=C
44 42 18 43 syl2anc φCRMBMM-1C=C
45 simpr φCRMBCRMB
46 44 45 eqbrtrd φCRMBMM-1CRMB
47 f1ocnv M:domM1-1 ontoXM-1:X1-1 ontodomM
48 f1of M-1:X1-1 ontodomMM-1:XdomM
49 42 47 48 3syl φCRMBM-1:XdomM
50 49 18 ffvelcdmd φCRMBM-1CdomM
51 8 adantr φCRMBBdomM
52 isorel MIsomE,RdomMXM-1CdomMBdomMM-1CEBMM-1CRMB
53 40 50 51 52 syl12anc φCRMBM-1CEBMM-1CRMB
54 46 53 mpbird φCRMBM-1CEB
55 epelg BdomMM-1CEBM-1CB
56 51 55 syl φCRMBM-1CEBM-1CB
57 54 56 mpbid φCRMBM-1CB
58 ffn M-1:XdomMM-1FnX
59 elpreima M-1FnXCM-1-1BCXM-1CB
60 49 58 59 3syl φCRMBCM-1-1BCXM-1CB
61 18 57 60 mpbir2and φCRMBCM-1-1B
62 imacnvcnv M-1-1B=MB
63 61 62 eleqtrdi φCRMBCMB
64 10 adantr φCRMBMB=NB
65 64 rneqd φCRMBranMB=ranNB
66 df-ima MB=ranMB
67 df-ima NB=ranNB
68 65 66 67 3eqtr4g φCRMBMB=NB
69 63 68 eleqtrd φCRMBCNB
70 34 69 sseldd φCRMBCY
71 64 cnveqd φCRMBMB-1=NB-1
72 dff1o3 M:domM1-1 ontoXM:domMontoXFunM-1
73 72 simprbi M:domM1-1 ontoXFunM-1
74 funcnvres FunM-1MB-1=M-1MB
75 42 73 74 3syl φCRMBMB-1=M-1MB
76 dff1o3 N:domN1-1 ontoYN:domNontoYFunN-1
77 76 simprbi N:domN1-1 ontoYFunN-1
78 funcnvres FunN-1NB-1=N-1NB
79 30 77 78 3syl φCRMBNB-1=N-1NB
80 71 75 79 3eqtr3d φCRMBM-1MB=N-1NB
81 80 fveq1d φCRMBM-1MBC=N-1NBC
82 63 fvresd φCRMBM-1MBC=M-1C
83 69 fvresd φCRMBN-1NBC=N-1C
84 81 82 83 3eqtr3d φCRMBM-1C=N-1C
85 18 70 84 3jca φCRMBCXCYM-1C=N-1C