Metamath Proof Explorer


Theorem frlmip

Description: The inner product of a free module. (Contributed by Thierry Arnoux, 20-Jun-2019)

Ref Expression
Hypotheses frlmphl.y Y=RfreeLModI
frlmphl.b B=BaseR
frlmphl.t ·˙=R
Assertion frlmip IWRVfBI,gBIRxIfx·˙gx=𝑖Y

Proof

Step Hyp Ref Expression
1 frlmphl.y Y=RfreeLModI
2 frlmphl.b B=BaseR
3 frlmphl.t ·˙=R
4 eqid RfreeLModI=RfreeLModI
5 eqid BaseRfreeLModI=BaseRfreeLModI
6 4 5 frlmpws RVIWRfreeLModI=ringLModR𝑠I𝑠BaseRfreeLModI
7 6 ancoms IWRVRfreeLModI=ringLModR𝑠I𝑠BaseRfreeLModI
8 2 ressid RVR𝑠B=R
9 eqidd RVsubringAlgRB=subringAlgRB
10 2 eqimssi BBaseR
11 10 a1i RVBBaseR
12 9 11 srasca RVR𝑠B=ScalarsubringAlgRB
13 8 12 eqtr3d RVR=ScalarsubringAlgRB
14 13 oveq1d RVR𝑠I×subringAlgRB=ScalarsubringAlgRB𝑠I×subringAlgRB
15 14 adantl IWRVR𝑠I×subringAlgRB=ScalarsubringAlgRB𝑠I×subringAlgRB
16 fvex subringAlgRBV
17 rlmval ringLModR=subringAlgRBaseR
18 2 fveq2i subringAlgRB=subringAlgRBaseR
19 17 18 eqtr4i ringLModR=subringAlgRB
20 19 oveq1i ringLModR𝑠I=subringAlgRB𝑠I
21 eqid ScalarsubringAlgRB=ScalarsubringAlgRB
22 20 21 pwsval subringAlgRBVIWringLModR𝑠I=ScalarsubringAlgRB𝑠I×subringAlgRB
23 16 22 mpan IWringLModR𝑠I=ScalarsubringAlgRB𝑠I×subringAlgRB
24 23 adantr IWRVringLModR𝑠I=ScalarsubringAlgRB𝑠I×subringAlgRB
25 15 24 eqtr4d IWRVR𝑠I×subringAlgRB=ringLModR𝑠I
26 1 fveq2i BaseY=BaseRfreeLModI
27 26 a1i IWRVBaseY=BaseRfreeLModI
28 25 27 oveq12d IWRVR𝑠I×subringAlgRB𝑠BaseY=ringLModR𝑠I𝑠BaseRfreeLModI
29 7 28 eqtr4d IWRVRfreeLModI=R𝑠I×subringAlgRB𝑠BaseY
30 1 29 eqtrid IWRVY=R𝑠I×subringAlgRB𝑠BaseY
31 30 fveq2d IWRV𝑖Y=𝑖R𝑠I×subringAlgRB𝑠BaseY
32 fvex BaseYV
33 eqid R𝑠I×subringAlgRB𝑠BaseY=R𝑠I×subringAlgRB𝑠BaseY
34 eqid 𝑖R𝑠I×subringAlgRB=𝑖R𝑠I×subringAlgRB
35 33 34 ressip BaseYV𝑖R𝑠I×subringAlgRB=𝑖R𝑠I×subringAlgRB𝑠BaseY
36 32 35 ax-mp 𝑖R𝑠I×subringAlgRB=𝑖R𝑠I×subringAlgRB𝑠BaseY
37 eqid R𝑠I×subringAlgRB=R𝑠I×subringAlgRB
38 simpr IWRVRV
39 snex subringAlgRBV
40 xpexg IWsubringAlgRBVI×subringAlgRBV
41 39 40 mpan2 IWI×subringAlgRBV
42 41 adantr IWRVI×subringAlgRBV
43 eqid BaseR𝑠I×subringAlgRB=BaseR𝑠I×subringAlgRB
44 16 snnz subringAlgRB
45 dmxp subringAlgRBdomI×subringAlgRB=I
46 44 45 mp1i IWRVdomI×subringAlgRB=I
47 37 38 42 43 46 34 prdsip IWRV𝑖R𝑠I×subringAlgRB=fBaseR𝑠I×subringAlgRB,gBaseR𝑠I×subringAlgRBRxIfx𝑖I×subringAlgRBxgx
48 37 38 42 43 46 prdsbas IWRVBaseR𝑠I×subringAlgRB=xIBaseI×subringAlgRBx
49 eqidd xIsubringAlgRB=subringAlgRB
50 10 a1i xIBBaseR
51 49 50 srabase xIBaseR=BasesubringAlgRB
52 2 a1i xIB=BaseR
53 16 fvconst2 xII×subringAlgRBx=subringAlgRB
54 53 fveq2d xIBaseI×subringAlgRBx=BasesubringAlgRB
55 51 52 54 3eqtr4rd xIBaseI×subringAlgRBx=B
56 55 adantl IWRVxIBaseI×subringAlgRBx=B
57 56 ixpeq2dva IWRVxIBaseI×subringAlgRBx=xIB
58 2 fvexi BV
59 ixpconstg IWBVxIB=BI
60 58 59 mpan2 IWxIB=BI
61 60 adantr IWRVxIB=BI
62 48 57 61 3eqtrd IWRVBaseR𝑠I×subringAlgRB=BI
63 53 50 sraip xIR=𝑖I×subringAlgRBx
64 3 63 eqtr2id xI𝑖I×subringAlgRBx=·˙
65 64 oveqd xIfx𝑖I×subringAlgRBxgx=fx·˙gx
66 65 mpteq2ia xIfx𝑖I×subringAlgRBxgx=xIfx·˙gx
67 66 oveq2i RxIfx𝑖I×subringAlgRBxgx=RxIfx·˙gx
68 67 a1i IWRVRxIfx𝑖I×subringAlgRBxgx=RxIfx·˙gx
69 62 62 68 mpoeq123dv IWRVfBaseR𝑠I×subringAlgRB,gBaseR𝑠I×subringAlgRBRxIfx𝑖I×subringAlgRBxgx=fBI,gBIRxIfx·˙gx
70 47 69 eqtrd IWRV𝑖R𝑠I×subringAlgRB=fBI,gBIRxIfx·˙gx
71 36 70 eqtr3id IWRV𝑖R𝑠I×subringAlgRB𝑠BaseY=fBI,gBIRxIfx·˙gx
72 31 71 eqtr2d IWRVfBI,gBIRxIfx·˙gx=𝑖Y