Metamath Proof Explorer


Theorem fseqenlem2

Description: Lemma for fseqen . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Hypotheses fseqenlem.a φAV
fseqenlem.b φBA
fseqenlem.f φF:A×A1-1 ontoA
fseqenlem.g G=seqωnV,fVxAsucnfxnFxnB
fseqenlem.k K=ykωAkdomyGdomyy
Assertion fseqenlem2 φK:kωAk1-1ω×A

Proof

Step Hyp Ref Expression
1 fseqenlem.a φAV
2 fseqenlem.b φBA
3 fseqenlem.f φF:A×A1-1 ontoA
4 fseqenlem.g G=seqωnV,fVxAsucnfxnFxnB
5 fseqenlem.k K=ykωAkdomyGdomyy
6 eliun ykωAkkωyAk
7 elmapi yAky:kA
8 7 ad2antll φkωyAky:kA
9 8 fdmd φkωyAkdomy=k
10 simprl φkωyAkkω
11 9 10 eqeltrd φkωyAkdomyω
12 9 fveq2d φkωyAkGdomy=Gk
13 12 fveq1d φkωyAkGdomyy=Gky
14 1 2 3 4 fseqenlem1 φkωGk:Ak1-1A
15 14 adantrr φkωyAkGk:Ak1-1A
16 f1f Gk:Ak1-1AGk:AkA
17 15 16 syl φkωyAkGk:AkA
18 simprr φkωyAkyAk
19 17 18 ffvelcdmd φkωyAkGkyA
20 13 19 eqeltrd φkωyAkGdomyyA
21 11 20 opelxpd φkωyAkdomyGdomyyω×A
22 21 rexlimdvaa φkωyAkdomyGdomyyω×A
23 6 22 biimtrid φykωAkdomyGdomyyω×A
24 23 imp φykωAkdomyGdomyyω×A
25 24 5 fmptd φK:kωAkω×A
26 ffun K:kωAkω×AFunK
27 funbrfv2b FunKzKwzdomKKz=w
28 25 26 27 3syl φzKwzdomKKz=w
29 28 simplbda φzKwKz=w
30 28 simprbda φzKwzdomK
31 25 fdmd φdomK=kωAk
32 31 adantr φzKwdomK=kωAk
33 30 32 eleqtrd φzKwzkωAk
34 dmeq y=zdomy=domz
35 34 fveq2d y=zGdomy=Gdomz
36 id y=zy=z
37 35 36 fveq12d y=zGdomyy=Gdomzz
38 34 37 opeq12d y=zdomyGdomyy=domzGdomzz
39 opex domzGdomzzV
40 38 5 39 fvmpt zkωAkKz=domzGdomzz
41 33 40 syl φzKwKz=domzGdomzz
42 29 41 eqtr3d φzKww=domzGdomzz
43 42 fveq2d φzKw1stw=1stdomzGdomzz
44 vex zV
45 44 dmex domzV
46 fvex GdomzzV
47 45 46 op1st 1stdomzGdomzz=domz
48 43 47 eqtrdi φzKw1stw=domz
49 48 fveq2d φzKwG1stw=Gdomz
50 49 cnveqd φzKwG1stw-1=Gdomz-1
51 42 fveq2d φzKw2ndw=2nddomzGdomzz
52 45 46 op2nd 2nddomzGdomzz=Gdomzz
53 51 52 eqtrdi φzKw2ndw=Gdomzz
54 50 53 fveq12d φzKwG1stw-12ndw=Gdomz-1Gdomzz
55 eliun zkωAkkωzAk
56 elmapi zAkz:kA
57 56 adantl kωzAkz:kA
58 57 fdmd kωzAkdomz=k
59 simpl kωzAkkω
60 58 59 eqeltrd kωzAkdomzω
61 simpr kωzAkzAk
62 58 oveq2d kωzAkAdomz=Ak
63 61 62 eleqtrrd kωzAkzAdomz
64 60 63 jca kωzAkdomzωzAdomz
65 64 rexlimiva kωzAkdomzωzAdomz
66 55 65 sylbi zkωAkdomzωzAdomz
67 33 66 syl φzKwdomzωzAdomz
68 67 simpld φzKwdomzω
69 1 2 3 4 fseqenlem1 φdomzωGdomz:Adomz1-1A
70 68 69 syldan φzKwGdomz:Adomz1-1A
71 f1f1orn Gdomz:Adomz1-1AGdomz:Adomz1-1 ontoranGdomz
72 70 71 syl φzKwGdomz:Adomz1-1 ontoranGdomz
73 67 simprd φzKwzAdomz
74 f1ocnvfv1 Gdomz:Adomz1-1 ontoranGdomzzAdomzGdomz-1Gdomzz=z
75 72 73 74 syl2anc φzKwGdomz-1Gdomzz=z
76 54 75 eqtr2d φzKwz=G1stw-12ndw
77 76 ex φzKwz=G1stw-12ndw
78 77 alrimiv φzzKwz=G1stw-12ndw
79 mo2icl zzKwz=G1stw-12ndw*zzKw
80 78 79 syl φ*zzKw
81 80 alrimiv φw*zzKw
82 dff12 K:kωAk1-1ω×AK:kωAkω×Aw*zzKw
83 25 81 82 sylanbrc φK:kωAk1-1ω×A