| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fseqenlem.a |
|
| 2 |
|
fseqenlem.b |
|
| 3 |
|
fseqenlem.f |
|
| 4 |
|
fseqenlem.g |
|
| 5 |
|
fseqenlem.k |
|
| 6 |
|
eliun |
|
| 7 |
|
elmapi |
|
| 8 |
7
|
ad2antll |
|
| 9 |
8
|
fdmd |
|
| 10 |
|
simprl |
|
| 11 |
9 10
|
eqeltrd |
|
| 12 |
9
|
fveq2d |
|
| 13 |
12
|
fveq1d |
|
| 14 |
1 2 3 4
|
fseqenlem1 |
|
| 15 |
14
|
adantrr |
|
| 16 |
|
f1f |
|
| 17 |
15 16
|
syl |
|
| 18 |
|
simprr |
|
| 19 |
17 18
|
ffvelcdmd |
|
| 20 |
13 19
|
eqeltrd |
|
| 21 |
11 20
|
opelxpd |
|
| 22 |
21
|
rexlimdvaa |
|
| 23 |
6 22
|
biimtrid |
|
| 24 |
23
|
imp |
|
| 25 |
24 5
|
fmptd |
|
| 26 |
|
ffun |
|
| 27 |
|
funbrfv2b |
|
| 28 |
25 26 27
|
3syl |
|
| 29 |
28
|
simplbda |
|
| 30 |
28
|
simprbda |
|
| 31 |
25
|
fdmd |
|
| 32 |
31
|
adantr |
|
| 33 |
30 32
|
eleqtrd |
|
| 34 |
|
dmeq |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
id |
|
| 37 |
35 36
|
fveq12d |
|
| 38 |
34 37
|
opeq12d |
|
| 39 |
|
opex |
|
| 40 |
38 5 39
|
fvmpt |
|
| 41 |
33 40
|
syl |
|
| 42 |
29 41
|
eqtr3d |
|
| 43 |
42
|
fveq2d |
|
| 44 |
|
vex |
|
| 45 |
44
|
dmex |
|
| 46 |
|
fvex |
|
| 47 |
45 46
|
op1st |
|
| 48 |
43 47
|
eqtrdi |
|
| 49 |
48
|
fveq2d |
|
| 50 |
49
|
cnveqd |
|
| 51 |
42
|
fveq2d |
|
| 52 |
45 46
|
op2nd |
|
| 53 |
51 52
|
eqtrdi |
|
| 54 |
50 53
|
fveq12d |
|
| 55 |
|
eliun |
|
| 56 |
|
elmapi |
|
| 57 |
56
|
adantl |
|
| 58 |
57
|
fdmd |
|
| 59 |
|
simpl |
|
| 60 |
58 59
|
eqeltrd |
|
| 61 |
|
simpr |
|
| 62 |
58
|
oveq2d |
|
| 63 |
61 62
|
eleqtrrd |
|
| 64 |
60 63
|
jca |
|
| 65 |
64
|
rexlimiva |
|
| 66 |
55 65
|
sylbi |
|
| 67 |
33 66
|
syl |
|
| 68 |
67
|
simpld |
|
| 69 |
1 2 3 4
|
fseqenlem1 |
|
| 70 |
68 69
|
syldan |
|
| 71 |
|
f1f1orn |
|
| 72 |
70 71
|
syl |
|
| 73 |
67
|
simprd |
|
| 74 |
|
f1ocnvfv1 |
|
| 75 |
72 73 74
|
syl2anc |
|
| 76 |
54 75
|
eqtr2d |
|
| 77 |
76
|
ex |
|
| 78 |
77
|
alrimiv |
|
| 79 |
|
mo2icl |
|
| 80 |
78 79
|
syl |
|
| 81 |
80
|
alrimiv |
|
| 82 |
|
dff12 |
|
| 83 |
25 81 82
|
sylanbrc |
|