Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsumcvg3.1 | |
|
fsumcvg3.2 | |
||
fsumcvg3.3 | |
||
fsumcvg3.4 | |
||
fsumcvg3.5 | |
||
fsumcvg3.6 | |
||
Assertion | fsumcvg3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumcvg3.1 | |
|
2 | fsumcvg3.2 | |
|
3 | fsumcvg3.3 | |
|
4 | fsumcvg3.4 | |
|
5 | fsumcvg3.5 | |
|
6 | fsumcvg3.6 | |
|
7 | sseq1 | |
|
8 | 7 | rexbidv | |
9 | 4 | adantr | |
10 | 9 1 | sseqtrdi | |
11 | ltso | |
|
12 | 3 | adantr | |
13 | simpr | |
|
14 | uzssz | |
|
15 | zssre | |
|
16 | 14 15 | sstri | |
17 | 1 16 | eqsstri | |
18 | 9 17 | sstrdi | |
19 | 12 13 18 | 3jca | |
20 | fisupcl | |
|
21 | 11 19 20 | sylancr | |
22 | 10 21 | sseldd | |
23 | fimaxre2 | |
|
24 | 18 12 23 | syl2anc | |
25 | 18 13 24 | 3jca | |
26 | suprub | |
|
27 | 25 26 | sylan | |
28 | 10 | sselda | |
29 | 14 22 | sselid | |
30 | 29 | adantr | |
31 | elfz5 | |
|
32 | 28 30 31 | syl2anc | |
33 | 27 32 | mpbird | |
34 | 33 | ex | |
35 | 34 | ssrdv | |
36 | oveq2 | |
|
37 | 36 | sseq2d | |
38 | 37 | rspcev | |
39 | 22 35 38 | syl2anc | |
40 | uzid | |
|
41 | 2 40 | syl | |
42 | 0ss | |
|
43 | oveq2 | |
|
44 | 43 | sseq2d | |
45 | 44 | rspcev | |
46 | 41 42 45 | sylancl | |
47 | 8 39 46 | pm2.61ne | |
48 | 1 | eleq2i | |
49 | 48 5 | sylan2br | |
50 | 49 | adantlr | |
51 | simprl | |
|
52 | 6 | adantlr | |
53 | simprr | |
|
54 | 50 51 52 53 | fsumcvg2 | |
55 | climrel | |
|
56 | 55 | releldmi | |
57 | 54 56 | syl | |
58 | 47 57 | rexlimddv | |