Metamath Proof Explorer


Theorem fsumcvg3

Description: A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses fsumcvg3.1 Z=M
fsumcvg3.2 φM
fsumcvg3.3 φAFin
fsumcvg3.4 φAZ
fsumcvg3.5 φkZFk=ifkAB0
fsumcvg3.6 φkAB
Assertion fsumcvg3 φseqM+Fdom

Proof

Step Hyp Ref Expression
1 fsumcvg3.1 Z=M
2 fsumcvg3.2 φM
3 fsumcvg3.3 φAFin
4 fsumcvg3.4 φAZ
5 fsumcvg3.5 φkZFk=ifkAB0
6 fsumcvg3.6 φkAB
7 sseq1 A=AMnMn
8 7 rexbidv A=nMAMnnMMn
9 4 adantr φAAZ
10 9 1 sseqtrdi φAAM
11 ltso <Or
12 3 adantr φAAFin
13 simpr φAA
14 uzssz M
15 zssre
16 14 15 sstri M
17 1 16 eqsstri Z
18 9 17 sstrdi φAA
19 12 13 18 3jca φAAFinAA
20 fisupcl <OrAFinAAsupA<A
21 11 19 20 sylancr φAsupA<A
22 10 21 sseldd φAsupA<M
23 fimaxre2 AAFinknAnk
24 18 12 23 syl2anc φAknAnk
25 18 13 24 3jca φAAAknAnk
26 suprub AAknAnkkAksupA<
27 25 26 sylan φAkAksupA<
28 10 sselda φAkAkM
29 14 22 sselid φAsupA<
30 29 adantr φAkAsupA<
31 elfz5 kMsupA<kMsupA<ksupA<
32 28 30 31 syl2anc φAkAkMsupA<ksupA<
33 27 32 mpbird φAkAkMsupA<
34 33 ex φAkAkMsupA<
35 34 ssrdv φAAMsupA<
36 oveq2 n=supA<Mn=MsupA<
37 36 sseq2d n=supA<AMnAMsupA<
38 37 rspcev supA<MAMsupA<nMAMn
39 22 35 38 syl2anc φAnMAMn
40 uzid MMM
41 2 40 syl φMM
42 0ss MM
43 oveq2 n=MMn=MM
44 43 sseq2d n=MMnMM
45 44 rspcev MMMMnMMn
46 41 42 45 sylancl φnMMn
47 8 39 46 pm2.61ne φnMAMn
48 1 eleq2i kZkM
49 48 5 sylan2br φkMFk=ifkAB0
50 49 adantlr φnMAMnkMFk=ifkAB0
51 simprl φnMAMnnM
52 6 adantlr φnMAMnkAB
53 simprr φnMAMnAMn
54 50 51 52 53 fsumcvg2 φnMAMnseqM+FseqM+Fn
55 climrel Rel
56 55 releldmi seqM+FseqM+FnseqM+Fdom
57 54 56 syl φnMAMnseqM+Fdom
58 47 57 rexlimddv φseqM+Fdom