Metamath Proof Explorer


Theorem fsuppcurry1

Description: Finite support of a curried function with a constant first argument. (Contributed by Thierry Arnoux, 7-Jul-2023)

Ref Expression
Hypotheses fsuppcurry1.g G=xBCFx
fsuppcurry1.z φZU
fsuppcurry1.a φAV
fsuppcurry1.b φBW
fsuppcurry1.f φFFnA×B
fsuppcurry1.c φCA
fsuppcurry1.1 φfinSuppZF
Assertion fsuppcurry1 φfinSuppZG

Proof

Step Hyp Ref Expression
1 fsuppcurry1.g G=xBCFx
2 fsuppcurry1.z φZU
3 fsuppcurry1.a φAV
4 fsuppcurry1.b φBW
5 fsuppcurry1.f φFFnA×B
6 fsuppcurry1.c φCA
7 fsuppcurry1.1 φfinSuppZF
8 oveq2 x=yCFx=CFy
9 8 cbvmptv xBCFx=yBCFy
10 1 9 eqtri G=yBCFy
11 4 mptexd φyBCFyV
12 10 11 eqeltrid φGV
13 1 funmpt2 FunG
14 13 a1i φFunG
15 fo2nd 2nd:VontoV
16 fofun 2nd:VontoVFun2nd
17 15 16 ax-mp Fun2nd
18 funres Fun2ndFun2ndV×V
19 17 18 mp1i φFun2ndV×V
20 7 fsuppimpd φFsuppZFin
21 imafi Fun2ndV×VFsuppZFin2ndV×VFsuppZFin
22 19 20 21 syl2anc φ2ndV×VFsuppZFin
23 ovexd φyBCFyV
24 23 10 fmptd φG:BV
25 eldif yB2ndV×VFsuppZyB¬y2ndV×VFsuppZ
26 6 ad2antrr φyB¬Gy=ZCA
27 simplr φyB¬Gy=ZyB
28 26 27 opelxpd φyB¬Gy=ZCyA×B
29 df-ov CFy=FCy
30 ovexd φyB¬Gy=ZCFyV
31 1 8 27 30 fvmptd3 φyB¬Gy=ZGy=CFy
32 simpr φyB¬Gy=Z¬Gy=Z
33 32 neqned φyB¬Gy=ZGyZ
34 31 33 eqnetrrd φyB¬Gy=ZCFyZ
35 29 34 eqnetrrid φyB¬Gy=ZFCyZ
36 3 4 xpexd φA×BV
37 elsuppfn FFnA×BA×BVZUCysuppZFCyA×BFCyZ
38 5 36 2 37 syl3anc φCysuppZFCyA×BFCyZ
39 38 ad2antrr φyB¬Gy=ZCysuppZFCyA×BFCyZ
40 28 35 39 mpbir2and φyB¬Gy=ZCysuppZF
41 simpr φyB¬Gy=Zz=Cyz=Cy
42 41 fveq2d φyB¬Gy=Zz=Cy2ndV×Vz=2ndV×VCy
43 xpss A×BV×V
44 28 adantr φyB¬Gy=Zz=CyCyA×B
45 43 44 sselid φyB¬Gy=Zz=CyCyV×V
46 45 fvresd φyB¬Gy=Zz=Cy2ndV×VCy=2ndCy
47 26 adantr φyB¬Gy=Zz=CyCA
48 27 adantr φyB¬Gy=Zz=CyyB
49 op2ndg CAyB2ndCy=y
50 47 48 49 syl2anc φyB¬Gy=Zz=Cy2ndCy=y
51 42 46 50 3eqtrd φyB¬Gy=Zz=Cy2ndV×Vz=y
52 40 51 rspcedeq1vd φyB¬Gy=ZzsuppZF2ndV×Vz=y
53 fofn 2nd:VontoV2ndFnV
54 fnresin 2ndFnV2ndV×VFnVV×V
55 15 53 54 mp2b 2ndV×VFnVV×V
56 ssv V×VV
57 sseqin2 V×VVVV×V=V×V
58 56 57 mpbi VV×V=V×V
59 58 fneq2i 2ndV×VFnVV×V2ndV×VFnV×V
60 55 59 mpbi 2ndV×VFnV×V
61 60 a1i φ2ndV×VFnV×V
62 suppssdm FsuppZdomF
63 5 fndmd φdomF=A×B
64 62 63 sseqtrid φFsuppZA×B
65 64 43 sstrdi φFsuppZV×V
66 61 65 fvelimabd φy2ndV×VFsuppZzsuppZF2ndV×Vz=y
67 66 ad2antrr φyB¬Gy=Zy2ndV×VFsuppZzsuppZF2ndV×Vz=y
68 52 67 mpbird φyB¬Gy=Zy2ndV×VFsuppZ
69 68 ex φyB¬Gy=Zy2ndV×VFsuppZ
70 69 con1d φyB¬y2ndV×VFsuppZGy=Z
71 70 impr φyB¬y2ndV×VFsuppZGy=Z
72 25 71 sylan2b φyB2ndV×VFsuppZGy=Z
73 24 72 suppss φGsuppZ2ndV×VFsuppZ
74 suppssfifsupp GVFunGZU2ndV×VFsuppZFinGsuppZ2ndV×VFsuppZfinSuppZG
75 12 14 2 22 73 74 syl32anc φfinSuppZG