Metamath Proof Explorer


Theorem fsuppcurry2

Description: Finite support of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 7-Jul-2023)

Ref Expression
Hypotheses fsuppcurry2.g G=xAxFC
fsuppcurry2.z φZU
fsuppcurry2.a φAV
fsuppcurry2.b φBW
fsuppcurry2.f φFFnA×B
fsuppcurry2.c φCB
fsuppcurry2.1 φfinSuppZF
Assertion fsuppcurry2 φfinSuppZG

Proof

Step Hyp Ref Expression
1 fsuppcurry2.g G=xAxFC
2 fsuppcurry2.z φZU
3 fsuppcurry2.a φAV
4 fsuppcurry2.b φBW
5 fsuppcurry2.f φFFnA×B
6 fsuppcurry2.c φCB
7 fsuppcurry2.1 φfinSuppZF
8 oveq1 x=yxFC=yFC
9 8 cbvmptv xAxFC=yAyFC
10 1 9 eqtri G=yAyFC
11 3 mptexd φyAyFCV
12 10 11 eqeltrid φGV
13 1 funmpt2 FunG
14 13 a1i φFunG
15 fo1st 1st:VontoV
16 fofun 1st:VontoVFun1st
17 15 16 ax-mp Fun1st
18 funres Fun1stFun1stV×V
19 17 18 mp1i φFun1stV×V
20 7 fsuppimpd φFsuppZFin
21 imafi Fun1stV×VFsuppZFin1stV×VFsuppZFin
22 19 20 21 syl2anc φ1stV×VFsuppZFin
23 ovexd φyAyFCV
24 23 10 fmptd φG:AV
25 eldif yA1stV×VFsuppZyA¬y1stV×VFsuppZ
26 simplr φyA¬Gy=ZyA
27 6 ad2antrr φyA¬Gy=ZCB
28 26 27 opelxpd φyA¬Gy=ZyCA×B
29 df-ov yFC=FyC
30 ovexd φyA¬Gy=ZyFCV
31 1 8 26 30 fvmptd3 φyA¬Gy=ZGy=yFC
32 simpr φyA¬Gy=Z¬Gy=Z
33 32 neqned φyA¬Gy=ZGyZ
34 31 33 eqnetrrd φyA¬Gy=ZyFCZ
35 29 34 eqnetrrid φyA¬Gy=ZFyCZ
36 3 4 xpexd φA×BV
37 elsuppfn FFnA×BA×BVZUyCsuppZFyCA×BFyCZ
38 5 36 2 37 syl3anc φyCsuppZFyCA×BFyCZ
39 38 ad2antrr φyA¬Gy=ZyCsuppZFyCA×BFyCZ
40 28 35 39 mpbir2and φyA¬Gy=ZyCsuppZF
41 simpr φyA¬Gy=Zz=yCz=yC
42 41 fveq2d φyA¬Gy=Zz=yC1stV×Vz=1stV×VyC
43 xpss A×BV×V
44 28 adantr φyA¬Gy=Zz=yCyCA×B
45 43 44 sselid φyA¬Gy=Zz=yCyCV×V
46 45 fvresd φyA¬Gy=Zz=yC1stV×VyC=1styC
47 26 adantr φyA¬Gy=Zz=yCyA
48 27 adantr φyA¬Gy=Zz=yCCB
49 op1stg yACB1styC=y
50 47 48 49 syl2anc φyA¬Gy=Zz=yC1styC=y
51 42 46 50 3eqtrd φyA¬Gy=Zz=yC1stV×Vz=y
52 40 51 rspcedeq1vd φyA¬Gy=ZzsuppZF1stV×Vz=y
53 fofn 1st:VontoV1stFnV
54 fnresin 1stFnV1stV×VFnVV×V
55 15 53 54 mp2b 1stV×VFnVV×V
56 ssv V×VV
57 sseqin2 V×VVVV×V=V×V
58 56 57 mpbi VV×V=V×V
59 58 fneq2i 1stV×VFnVV×V1stV×VFnV×V
60 55 59 mpbi 1stV×VFnV×V
61 60 a1i φ1stV×VFnV×V
62 suppssdm FsuppZdomF
63 5 fndmd φdomF=A×B
64 62 63 sseqtrid φFsuppZA×B
65 64 43 sstrdi φFsuppZV×V
66 61 65 fvelimabd φy1stV×VFsuppZzsuppZF1stV×Vz=y
67 66 ad2antrr φyA¬Gy=Zy1stV×VFsuppZzsuppZF1stV×Vz=y
68 52 67 mpbird φyA¬Gy=Zy1stV×VFsuppZ
69 68 ex φyA¬Gy=Zy1stV×VFsuppZ
70 69 con1d φyA¬y1stV×VFsuppZGy=Z
71 70 impr φyA¬y1stV×VFsuppZGy=Z
72 25 71 sylan2b φyA1stV×VFsuppZGy=Z
73 24 72 suppss φGsuppZ1stV×VFsuppZ
74 suppssfifsupp GVFunGZU1stV×VFsuppZFinGsuppZ1stV×VFsuppZfinSuppZG
75 12 14 2 22 73 74 syl32anc φfinSuppZG