Description: Lemma for fsuppmapnn0fiub and fsuppmapnn0fiubex . (Contributed by AV, 2-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fsuppmapnn0fiub.u | |
|
fsuppmapnn0fiub.s | |
||
Assertion | fsuppmapnn0fiublem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmapnn0fiub.u | |
|
2 | fsuppmapnn0fiub.s | |
|
3 | nfv | |
|
4 | nfra1 | |
|
5 | nfv | |
|
6 | 4 5 | nfan | |
7 | 3 6 | nfan | |
8 | suppssdm | |
|
9 | ssel2 | |
|
10 | elmapfn | |
|
11 | fndm | |
|
12 | eqimss | |
|
13 | 11 12 | syl | |
14 | 9 10 13 | 3syl | |
15 | 14 | ex | |
16 | 15 | 3ad2ant1 | |
17 | 16 | adantr | |
18 | 17 | imp | |
19 | 8 18 | sstrid | |
20 | 19 | ex | |
21 | 7 20 | ralrimi | |
22 | iunss | |
|
23 | 21 22 | sylibr | |
24 | 1 23 | eqsstrid | |
25 | ltso | |
|
26 | 25 | a1i | |
27 | simp2 | |
|
28 | id | |
|
29 | 28 | fsuppimpd | |
30 | 29 | ralimi | |
31 | 30 | adantr | |
32 | iunfi | |
|
33 | 27 31 32 | syl2an | |
34 | 1 33 | eqeltrid | |
35 | simprr | |
|
36 | 9 10 11 | 3syl | |
37 | 36 | ex | |
38 | 37 | 3ad2ant1 | |
39 | 38 | adantr | |
40 | 39 | imp | |
41 | nn0ssre | |
|
42 | 40 41 | eqsstrdi | |
43 | 8 42 | sstrid | |
44 | 43 | ex | |
45 | 7 44 | ralrimi | |
46 | 1 | sseq1i | |
47 | iunss | |
|
48 | 46 47 | bitri | |
49 | 45 48 | sylibr | |
50 | fisupcl | |
|
51 | 2 50 | eqeltrid | |
52 | 26 34 35 49 51 | syl13anc | |
53 | 24 52 | sseldd | |
54 | 53 | ex | |