| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsuppmapnn0fiub.u |
|
| 2 |
|
fsuppmapnn0fiub.s |
|
| 3 |
|
nfv |
|
| 4 |
|
nfra1 |
|
| 5 |
|
nfv |
|
| 6 |
4 5
|
nfan |
|
| 7 |
3 6
|
nfan |
|
| 8 |
|
suppssdm |
|
| 9 |
|
ssel2 |
|
| 10 |
|
elmapfn |
|
| 11 |
|
fndm |
|
| 12 |
|
eqimss |
|
| 13 |
9 10 11 12
|
4syl |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
15
|
adantr |
|
| 17 |
16
|
imp |
|
| 18 |
8 17
|
sstrid |
|
| 19 |
18
|
ex |
|
| 20 |
7 19
|
ralrimi |
|
| 21 |
|
iunss |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
1 22
|
eqsstrid |
|
| 24 |
|
ltso |
|
| 25 |
24
|
a1i |
|
| 26 |
|
simp2 |
|
| 27 |
|
id |
|
| 28 |
27
|
fsuppimpd |
|
| 29 |
28
|
ralimi |
|
| 30 |
29
|
adantr |
|
| 31 |
|
iunfi |
|
| 32 |
26 30 31
|
syl2an |
|
| 33 |
1 32
|
eqeltrid |
|
| 34 |
|
simprr |
|
| 35 |
9 10 11
|
3syl |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
3ad2ant1 |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
imp |
|
| 40 |
|
nn0ssre |
|
| 41 |
39 40
|
eqsstrdi |
|
| 42 |
8 41
|
sstrid |
|
| 43 |
42
|
ex |
|
| 44 |
7 43
|
ralrimi |
|
| 45 |
1
|
sseq1i |
|
| 46 |
|
iunss |
|
| 47 |
45 46
|
bitri |
|
| 48 |
44 47
|
sylibr |
|
| 49 |
|
fisupcl |
|
| 50 |
2 49
|
eqeltrid |
|
| 51 |
25 33 34 48 50
|
syl13anc |
|
| 52 |
23 51
|
sseldd |
|
| 53 |
52
|
ex |
|