Metamath Proof Explorer


Theorem fundcmpsurinjimaid

Description: Every function F : A --> B can be decomposed into a surjective function onto the image ( F " A ) of the domain of F and an injective function from the image ( F " A ) . (Contributed by AV, 17-Mar-2024)

Ref Expression
Hypotheses fundcmpsurinjimaid.i I=FA
fundcmpsurinjimaid.g G=xAFx
fundcmpsurinjimaid.h H=II
Assertion fundcmpsurinjimaid F:ABG:AontoIH:I1-1BF=HG

Proof

Step Hyp Ref Expression
1 fundcmpsurinjimaid.i I=FA
2 fundcmpsurinjimaid.g G=xAFx
3 fundcmpsurinjimaid.h H=II
4 fimadmfo F:ABF:AontoFA
5 ffn F:ABFFnA
6 dffn5 FFnAF=xAFx
7 5 6 sylib F:ABF=xAFx
8 7 eqcomd F:ABxAFx=F
9 2 8 eqtrid F:ABG=F
10 eqidd F:ABA=A
11 1 a1i F:ABI=FA
12 9 10 11 foeq123d F:ABG:AontoIF:AontoFA
13 4 12 mpbird F:ABG:AontoI
14 f1oi II:I1-1 ontoI
15 f1of1 II:I1-1 ontoIII:I1-1I
16 f1eq1 H=IIH:I1-1III:I1-1I
17 3 16 ax-mp H:I1-1III:I1-1I
18 17 biimpri II:I1-1IH:I1-1I
19 fimass F:ABFAB
20 1 19 eqsstrid F:ABIB
21 f1ss H:I1-1IIBH:I1-1B
22 18 20 21 syl2an II:I1-1IF:ABH:I1-1B
23 22 ex II:I1-1IF:ABH:I1-1B
24 14 15 23 mp2b F:ABH:I1-1B
25 3 fveq1i HFx=IIFx
26 5 adantr F:ABxAFFnA
27 simpr F:ABxAxA
28 26 27 27 fnfvimad F:ABxAFxFA
29 28 1 eleqtrrdi F:ABxAFxI
30 fvresi FxIIIFx=Fx
31 29 30 syl F:ABxAIIFx=Fx
32 25 31 eqtrid F:ABxAHFx=Fx
33 32 mpteq2dva F:ABxAHFx=xAFx
34 2 coeq2i HG=HxAFx
35 f1of II:I1-1 ontoIII:II
36 14 35 ax-mp II:II
37 3 feq1i H:IIII:II
38 36 37 mpbir H:II
39 38 a1i F:ABH:II
40 39 29 cofmpt F:ABHxAFx=xAHFx
41 34 40 eqtrid F:ABHG=xAHFx
42 33 41 7 3eqtr4rd F:ABF=HG
43 13 24 42 3jca F:ABG:AontoIH:I1-1BF=HG