Metamath Proof Explorer


Theorem gneispace

Description: The predicate that F is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispace F V F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispace3 F V F A Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
3 simpll Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p Fun F
4 simplr Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p ran F 𝒫 𝒫 dom F
5 difss 𝒫 𝒫 dom F 𝒫 𝒫 dom F
6 difss 𝒫 dom F 𝒫 dom F
7 6 sspwi 𝒫 𝒫 dom F 𝒫 𝒫 dom F
8 5 7 sstri 𝒫 𝒫 dom F 𝒫 𝒫 dom F
9 4 8 sstrdi Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p ran F 𝒫 𝒫 dom F
10 simpr Fun F ran F 𝒫 𝒫 dom F ran F 𝒫 𝒫 dom F
11 simpl Fun F ran F 𝒫 𝒫 dom F Fun F
12 fvelrn Fun F p dom F F p ran F
13 11 12 sylan Fun F ran F 𝒫 𝒫 dom F p dom F F p ran F
14 ssel2 ran F 𝒫 𝒫 dom F F p ran F F p 𝒫 𝒫 dom F
15 eldifsni F p 𝒫 𝒫 dom F F p
16 14 15 syl ran F 𝒫 𝒫 dom F F p ran F F p
17 10 13 16 syl2an2r Fun F ran F 𝒫 𝒫 dom F p dom F F p
18 17 ralrimiva Fun F ran F 𝒫 𝒫 dom F p dom F F p
19 r19.26 p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p p dom F n F p p n s 𝒫 dom F n s s F p
20 19 biimpri p dom F F p p dom F n F p p n s 𝒫 dom F n s s F p p dom F F p n F p p n s 𝒫 dom F n s s F p
21 18 20 sylan Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p p dom F F p n F p p n s 𝒫 dom F n s s F p
22 3 9 21 3jca Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
23 simp1 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p Fun F
24 nfv p Fun F
25 nfv p ran F 𝒫 𝒫 dom F
26 nfra1 p p dom F F p n F p p n s 𝒫 dom F n s s F p
27 24 25 26 nf3an p Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
28 simpr F p n F p p n s 𝒫 dom F n s s F p n F p p n s 𝒫 dom F n s s F p
29 simpl p n s 𝒫 dom F n s s F p p n
30 29 19.8ad p n s 𝒫 dom F n s s F p p p n
31 30 ralimi n F p p n s 𝒫 dom F n s s F p n F p p p n
32 28 31 syl F p n F p p n s 𝒫 dom F n s s F p n F p p p n
33 32 ralimi p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F n F p p p n
34 33 3ad2ant3 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F n F p p p n
35 rsp p dom F n F p p p n p dom F n F p p p n
36 34 35 syl Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F n F p p p n
37 df-ex p p n ¬ p ¬ p n
38 37 ralbii n F p p p n n F p ¬ p ¬ p n
39 ralnex n F p ¬ p ¬ p n ¬ n F p p ¬ p n
40 38 39 bitri n F p p p n ¬ n F p p ¬ p n
41 0el F p n F p p ¬ p n
42 40 41 xchbinxr n F p p p n ¬ F p
43 42 biimpi n F p p p n ¬ F p
44 elinel1 F p 𝒫 dom F F p
45 43 44 nsyl n F p p p n ¬ F p 𝒫 dom F
46 disjsn F p 𝒫 dom F = ¬ F p 𝒫 dom F
47 45 46 sylibr n F p p p n F p 𝒫 dom F =
48 disjdif2 F p 𝒫 dom F = F p 𝒫 dom F = F p 𝒫 dom F
49 47 48 syl n F p p p n F p 𝒫 dom F = F p 𝒫 dom F
50 36 49 syl6 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p 𝒫 dom F = F p 𝒫 dom F
51 simp2 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p ran F 𝒫 𝒫 dom F
52 12 ex Fun F p dom F F p ran F
53 23 52 syl Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p ran F
54 ssel2 ran F 𝒫 𝒫 dom F F p ran F F p 𝒫 𝒫 dom F
55 fvex F p V
56 55 elpw F p 𝒫 𝒫 dom F F p 𝒫 dom F
57 df-ss F p 𝒫 dom F F p 𝒫 dom F = F p
58 56 57 sylbb F p 𝒫 𝒫 dom F F p 𝒫 dom F = F p
59 54 58 syl ran F 𝒫 𝒫 dom F F p ran F F p 𝒫 dom F = F p
60 51 53 59 syl6an Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p 𝒫 dom F = F p
61 50 60 jcad Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p 𝒫 dom F = F p 𝒫 dom F F p 𝒫 dom F = F p
62 eqtr F p 𝒫 dom F = F p 𝒫 dom F F p 𝒫 dom F = F p F p 𝒫 dom F = F p
63 df-ss F p 𝒫 dom F F p 𝒫 dom F = F p
64 indif2 F p 𝒫 dom F = F p 𝒫 dom F
65 64 eqeq1i F p 𝒫 dom F = F p F p 𝒫 dom F = F p
66 63 65 bitri F p 𝒫 dom F F p 𝒫 dom F = F p
67 62 66 sylibr F p 𝒫 dom F = F p 𝒫 dom F F p 𝒫 dom F = F p F p 𝒫 dom F
68 61 67 syl6 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p 𝒫 dom F
69 27 68 ralrimi Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p 𝒫 dom F
70 23 funfnd Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p F Fn dom F
71 sseq1 x = F p x 𝒫 dom F F p 𝒫 dom F
72 71 ralrn F Fn dom F x ran F x 𝒫 dom F p dom F F p 𝒫 dom F
73 70 72 syl Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p x ran F x 𝒫 dom F p dom F F p 𝒫 dom F
74 69 73 mpbird Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p x ran F x 𝒫 dom F
75 pwssb ran F 𝒫 𝒫 dom F x ran F x 𝒫 dom F
76 74 75 sylibr Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p ran F 𝒫 𝒫 dom F
77 simpl F p n F p p n s 𝒫 dom F n s s F p F p
78 77 ralimi p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p
79 78 3ad2ant3 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p
80 23 79 jca Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p Fun F p dom F F p
81 elrnrexdm Fun F ran F p dom F = F p
82 nesym F p ¬ = F p
83 82 ralbii p dom F F p p dom F ¬ = F p
84 ralnex p dom F ¬ = F p ¬ p dom F = F p
85 83 84 sylbb p dom F F p ¬ p dom F = F p
86 81 85 nsyli Fun F p dom F F p ¬ ran F
87 86 imp Fun F p dom F F p ¬ ran F
88 disjsn ran F = ¬ ran F
89 87 88 sylibr Fun F p dom F F p ran F =
90 80 89 syl Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p ran F =
91 reldisj ran F 𝒫 𝒫 dom F ran F = ran F 𝒫 𝒫 dom F
92 91 biimpd ran F 𝒫 𝒫 dom F ran F = ran F 𝒫 𝒫 dom F
93 76 90 92 sylc Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p ran F 𝒫 𝒫 dom F
94 23 93 jca Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p Fun F ran F 𝒫 𝒫 dom F
95 19 biimpi p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p p dom F n F p p n s 𝒫 dom F n s s F p
96 95 3ad2ant3 Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p p dom F n F p p n s 𝒫 dom F n s s F p
97 simpr p dom F F p p dom F n F p p n s 𝒫 dom F n s s F p p dom F n F p p n s 𝒫 dom F n s s F p
98 96 97 syl Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F n F p p n s 𝒫 dom F n s s F p
99 94 98 jca Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p
100 22 99 impbii Fun F ran F 𝒫 𝒫 dom F p dom F n F p p n s 𝒫 dom F n s s F p Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
101 2 100 bitrdi F V F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p