Metamath Proof Explorer


Theorem gpg5nbgrvtx13starlem2

Description: Lemma 2 for gpg5nbgr3star . (Contributed by AV, 8-Sep-2025)

Ref Expression
Hypotheses gpg5nbgrvtx03starlem1.j J = 1 ..^ N 2
gpg5nbgrvtx03starlem1.g No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
gpg5nbgrvtx03starlem1.v V = Vtx G
gpg5nbgrvtx03starlem1.e E = Edg G
Assertion gpg5nbgrvtx13starlem2 N = 5 K J X 1 X + K mod N 1 X K mod N E

Proof

Step Hyp Ref Expression
1 gpg5nbgrvtx03starlem1.j J = 1 ..^ N 2
2 gpg5nbgrvtx03starlem1.g Could not format G = ( N gPetersenGr K ) : No typesetting found for |- G = ( N gPetersenGr K ) with typecode |-
3 gpg5nbgrvtx03starlem1.v V = Vtx G
4 gpg5nbgrvtx03starlem1.e E = Edg G
5 opex 1 X + K mod N V
6 opex 1 X K mod N V
7 5 6 pm3.2i 1 X + K mod N V 1 X K mod N V
8 opex 0 x V
9 opex 0 x + 1 mod N V
10 8 9 pm3.2i 0 x V 0 x + 1 mod N V
11 7 10 pm3.2i 1 X + K mod N V 1 X K mod N V 0 x V 0 x + 1 mod N V
12 ax-1ne0 1 0
13 12 orci 1 0 X + K mod N x
14 1ex 1 V
15 ovex X + K mod N V
16 14 15 opthne 1 X + K mod N 0 x 1 0 X + K mod N x
17 13 16 mpbir 1 X + K mod N 0 x
18 12 orci 1 0 X + K mod N x + 1 mod N
19 14 15 opthne 1 X + K mod N 0 x + 1 mod N 1 0 X + K mod N x + 1 mod N
20 18 19 mpbir 1 X + K mod N 0 x + 1 mod N
21 17 20 pm3.2i 1 X + K mod N 0 x 1 X + K mod N 0 x + 1 mod N
22 21 a1i N = 5 K J X x 0 ..^ N 1 X + K mod N 0 x 1 X + K mod N 0 x + 1 mod N
23 22 orcd N = 5 K J X x 0 ..^ N 1 X + K mod N 0 x 1 X + K mod N 0 x + 1 mod N 1 X K mod N 0 x 1 X K mod N 0 x + 1 mod N
24 prneimg 1 X + K mod N V 1 X K mod N V 0 x V 0 x + 1 mod N V 1 X + K mod N 0 x 1 X + K mod N 0 x + 1 mod N 1 X K mod N 0 x 1 X K mod N 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N
25 11 23 24 mpsyl N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N
26 17 orci 1 X + K mod N 0 x 1 X K mod N 1 x
27 26 a1i N = 5 K J X x 0 ..^ N 1 X + K mod N 0 x 1 X K mod N 1 x
28 12 orci 1 0 X K mod N x
29 ovex X K mod N V
30 14 29 opthne 1 X K mod N 0 x 1 0 X K mod N x
31 28 30 mpbir 1 X K mod N 0 x
32 31 olci 1 X + K mod N 1 x 1 X K mod N 0 x
33 32 a1i N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x 1 X K mod N 0 x
34 opex 1 x V
35 8 34 pm3.2i 0 x V 1 x V
36 7 35 pm3.2i 1 X + K mod N V 1 X K mod N V 0 x V 1 x V
37 prneimg2 1 X + K mod N V 1 X K mod N V 0 x V 1 x V 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 0 x 1 X K mod N 1 x 1 X + K mod N 1 x 1 X K mod N 0 x
38 36 37 mp1i N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 0 x 1 X K mod N 1 x 1 X + K mod N 1 x 1 X K mod N 0 x
39 27 33 38 mpbir2and N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 1 x
40 fvoveq1 N = 5 N 2 = 5 2
41 ceil5half3 5 2 = 3
42 40 41 eqtrdi N = 5 N 2 = 3
43 42 oveq2d N = 5 1 ..^ N 2 = 1 ..^ 3
44 1 43 eqtrid N = 5 J = 1 ..^ 3
45 44 eleq2d N = 5 K J K 1 ..^ 3
46 45 biimpa N = 5 K J K 1 ..^ 3
47 46 anim1ci N = 5 K J X X K 1 ..^ 3
48 minusmodnep2tmod X K 1 ..^ 3 X K mod 5 X + 2 K mod 5
49 47 48 syl N = 5 K J X X K mod 5 X + 2 K mod 5
50 oveq2 N = 5 X K mod N = X K mod 5
51 oveq2 N = 5 X + 2 K mod N = X + 2 K mod 5
52 50 51 neeq12d N = 5 X K mod N X + 2 K mod N X K mod 5 X + 2 K mod 5
53 52 ad2antrr N = 5 K J X X K mod N X + 2 K mod N X K mod 5 X + 2 K mod 5
54 49 53 mpbird N = 5 K J X X K mod N X + 2 K mod N
55 zcn X X
56 55 adantl N = 5 K J X X
57 elfzoelz K 1 ..^ N 2 K
58 57 1 eleq2s K J K
59 58 zcnd K J K
60 59 ad2antlr N = 5 K J X K
61 56 60 60 addassd N = 5 K J X X + K + K = X + K + K
62 60 2timesd N = 5 K J X 2 K = K + K
63 62 eqcomd N = 5 K J X K + K = 2 K
64 63 oveq2d N = 5 K J X X + K + K = X + 2 K
65 61 64 eqtrd N = 5 K J X X + K + K = X + 2 K
66 65 oveq1d N = 5 K J X X + K + K mod N = X + 2 K mod N
67 54 66 neeqtrrd N = 5 K J X X K mod N X + K + K mod N
68 zre X X
69 68 adantl N = 5 K J X X
70 58 zred K J K
71 70 ad2antlr N = 5 K J X K
72 69 71 readdcld N = 5 K J X X + K
73 5nn 5
74 eleq1 N = 5 N 5
75 73 74 mpbiri N = 5 N
76 75 nnrpd N = 5 N +
77 76 ad2antrr N = 5 K J X N +
78 modaddmod X + K K N + X + K mod N + K mod N = X + K + K mod N
79 72 71 77 78 syl3anc N = 5 K J X X + K mod N + K mod N = X + K + K mod N
80 67 79 neeqtrrd N = 5 K J X X K mod N X + K mod N + K mod N
81 80 ad2antrl X + K mod N = x N = 5 K J X x 0 ..^ N X K mod N X + K mod N + K mod N
82 oveq1 X + K mod N = x X + K mod N + K = x + K
83 82 oveq1d X + K mod N = x X + K mod N + K mod N = x + K mod N
84 83 adantr X + K mod N = x N = 5 K J X x 0 ..^ N X + K mod N + K mod N = x + K mod N
85 81 84 neeqtrd X + K mod N = x N = 5 K J X x 0 ..^ N X K mod N x + K mod N
86 85 olcd X + K mod N = x N = 5 K J X x 0 ..^ N X + K mod N x X K mod N x + K mod N
87 86 ex X + K mod N = x N = 5 K J X x 0 ..^ N X + K mod N x X K mod N x + K mod N
88 orc X + K mod N x X + K mod N x X K mod N x + K mod N
89 88 a1d X + K mod N x N = 5 K J X x 0 ..^ N X + K mod N x X K mod N x + K mod N
90 87 89 pm2.61ine N = 5 K J X x 0 ..^ N X + K mod N x X K mod N x + K mod N
91 14 15 opthne 1 X + K mod N 1 x 1 1 X + K mod N x
92 neirr ¬ 1 1
93 92 biorfi X + K mod N x 1 1 X + K mod N x
94 91 93 bitr4i 1 X + K mod N 1 x X + K mod N x
95 94 a1i N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x X + K mod N x
96 14 29 opthne 1 X K mod N 1 x + K mod N 1 1 X K mod N x + K mod N
97 92 biorfi X K mod N x + K mod N 1 1 X K mod N x + K mod N
98 96 97 bitr4i 1 X K mod N 1 x + K mod N X K mod N x + K mod N
99 98 a1i N = 5 K J X x 0 ..^ N 1 X K mod N 1 x + K mod N X K mod N x + K mod N
100 95 99 orbi12d N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x 1 X K mod N 1 x + K mod N X + K mod N x X K mod N x + K mod N
101 90 100 mpbird N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x 1 X K mod N 1 x + K mod N
102 2z 2
103 73 nnzi 5
104 2re 2
105 5re 5
106 2lt5 2 < 5
107 104 105 106 ltleii 2 5
108 eluz2 5 2 2 5 2 5
109 102 103 107 108 mpbir3an 5 2
110 eleq1 N = 5 N 2 5 2
111 109 110 mpbiri N = 5 N 2
112 111 ad2antrr N = 5 K J X N 2
113 simpr N = 5 K J X X
114 1 ceilhalfelfzo1 N K J K 1 ..^ N
115 75 114 syl N = 5 K J K 1 ..^ N
116 115 imp N = 5 K J K 1 ..^ N
117 116 adantr N = 5 K J X K 1 ..^ N
118 zplusmodne N 2 X K 1 ..^ N X + K mod N X mod N
119 112 113 117 118 syl3anc N = 5 K J X X + K mod N X mod N
120 59 adantl N = 5 K J K
121 npcan X K X - K + K = X
122 55 120 121 syl2anr N = 5 K J X X - K + K = X
123 122 oveq1d N = 5 K J X X - K + K mod N = X mod N
124 119 123 neeqtrrd N = 5 K J X X + K mod N X - K + K mod N
125 57 zred K 1 ..^ N 2 K
126 125 1 eleq2s K J K
127 126 ad2antlr N = 5 K J X K
128 69 127 resubcld N = 5 K J X X K
129 5rp 5 +
130 eleq1 N = 5 N + 5 +
131 129 130 mpbiri N = 5 N +
132 131 ad2antrr N = 5 K J X N +
133 modaddmod X K K N + X K mod N + K mod N = X - K + K mod N
134 128 127 132 133 syl3anc N = 5 K J X X K mod N + K mod N = X - K + K mod N
135 124 134 neeqtrrd N = 5 K J X X + K mod N X K mod N + K mod N
136 135 ad2antrl X K mod N = x N = 5 K J X x 0 ..^ N X + K mod N X K mod N + K mod N
137 oveq1 X K mod N = x X K mod N + K = x + K
138 137 oveq1d X K mod N = x X K mod N + K mod N = x + K mod N
139 138 adantr X K mod N = x N = 5 K J X x 0 ..^ N X K mod N + K mod N = x + K mod N
140 136 139 neeqtrd X K mod N = x N = 5 K J X x 0 ..^ N X + K mod N x + K mod N
141 140 orcd X K mod N = x N = 5 K J X x 0 ..^ N X + K mod N x + K mod N X K mod N x
142 141 ex X K mod N = x N = 5 K J X x 0 ..^ N X + K mod N x + K mod N X K mod N x
143 olc X K mod N x X + K mod N x + K mod N X K mod N x
144 143 a1d X K mod N x N = 5 K J X x 0 ..^ N X + K mod N x + K mod N X K mod N x
145 142 144 pm2.61ine N = 5 K J X x 0 ..^ N X + K mod N x + K mod N X K mod N x
146 14 15 opthne 1 X + K mod N 1 x + K mod N 1 1 X + K mod N x + K mod N
147 92 biorfi X + K mod N x + K mod N 1 1 X + K mod N x + K mod N
148 146 147 bitr4i 1 X + K mod N 1 x + K mod N X + K mod N x + K mod N
149 148 a1i N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x + K mod N X + K mod N x + K mod N
150 14 29 opthne 1 X K mod N 1 x 1 1 X K mod N x
151 92 biorfi X K mod N x 1 1 X K mod N x
152 150 151 bitr4i 1 X K mod N 1 x X K mod N x
153 152 a1i N = 5 K J X x 0 ..^ N 1 X K mod N 1 x X K mod N x
154 149 153 orbi12d N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x + K mod N 1 X K mod N 1 x X + K mod N x + K mod N X K mod N x
155 145 154 mpbird N = 5 K J X x 0 ..^ N 1 X + K mod N 1 x + K mod N 1 X K mod N 1 x
156 opex 1 x + K mod N V
157 34 156 pm3.2i 1 x V 1 x + K mod N V
158 7 157 pm3.2i 1 X + K mod N V 1 X K mod N V 1 x V 1 x + K mod N V
159 prneimg2 1 X + K mod N V 1 X K mod N V 1 x V 1 x + K mod N V 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N 1 X + K mod N 1 x 1 X K mod N 1 x + K mod N 1 X + K mod N 1 x + K mod N 1 X K mod N 1 x
160 158 159 mp1i N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N 1 X + K mod N 1 x 1 X K mod N 1 x + K mod N 1 X + K mod N 1 x + K mod N 1 X K mod N 1 x
161 101 155 160 mpbir2and N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N
162 25 39 161 3jca N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N
163 162 ralrimiva N = 5 K J X x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N
164 ralnex x 0 ..^ N ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N ¬ x 0 ..^ N 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
165 3ioran ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N ¬ 1 X + K mod N 1 X K mod N = 0 x 1 x ¬ 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
166 df-ne 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N
167 df-ne 1 X + K mod N 1 X K mod N 0 x 1 x ¬ 1 X + K mod N 1 X K mod N = 0 x 1 x
168 df-ne 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N ¬ 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
169 166 167 168 3anbi123i 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N ¬ 1 X + K mod N 1 X K mod N = 0 x 1 x ¬ 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
170 165 169 bitr4i ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N
171 170 ralbii x 0 ..^ N ¬ 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N
172 164 171 bitr3i ¬ x 0 ..^ N 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N x 0 ..^ N 1 X + K mod N 1 X K mod N 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N 0 x 1 x 1 X + K mod N 1 X K mod N 1 x 1 x + K mod N
173 163 172 sylibr N = 5 K J X ¬ x 0 ..^ N 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
174 5eluz3 5 3
175 eleq1 N = 5 N 3 5 3
176 174 175 mpbiri N = 5 N 3
177 eqid 0 ..^ N = 0 ..^ N
178 177 1 2 4 gpgedgel N 3 K J 1 X + K mod N 1 X K mod N E x 0 ..^ N 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
179 176 178 sylan N = 5 K J 1 X + K mod N 1 X K mod N E x 0 ..^ N 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
180 179 adantr N = 5 K J X 1 X + K mod N 1 X K mod N E x 0 ..^ N 1 X + K mod N 1 X K mod N = 0 x 0 x + 1 mod N 1 X + K mod N 1 X K mod N = 0 x 1 x 1 X + K mod N 1 X K mod N = 1 x 1 x + K mod N
181 173 180 mtbird N = 5 K J X ¬ 1 X + K mod N 1 X K mod N E
182 df-nel 1 X + K mod N 1 X K mod N E ¬ 1 X + K mod N 1 X K mod N E
183 181 182 sylibr N = 5 K J X 1 X + K mod N 1 X K mod N E