Metamath Proof Explorer


Theorem grur1cld

Description: Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023)

Ref Expression
Hypotheses grur1cld.1 φGUniv
grur1cld.2 φAG
Assertion grur1cld φR1AG

Proof

Step Hyp Ref Expression
1 grur1cld.1 φGUniv
2 grur1cld.2 φAG
3 2 adantr φAOnAG
4 eleq1 x=xGG
5 fveq2 x=R1x=R1
6 5 eleq1d x=R1xGR1G
7 4 6 imbi12d x=xGR1xGGR1G
8 eleq1 x=yxGyG
9 fveq2 x=yR1x=R1y
10 9 eleq1d x=yR1xGR1yG
11 8 10 imbi12d x=yxGR1xGyGR1yG
12 eleq1 x=sucyxGsucyG
13 fveq2 x=sucyR1x=R1sucy
14 13 eleq1d x=sucyR1xGR1sucyG
15 12 14 imbi12d x=sucyxGR1xGsucyGR1sucyG
16 eleq1 x=AxGAG
17 fveq2 x=AR1x=R1A
18 17 eleq1d x=AR1xGR1AG
19 16 18 imbi12d x=AxGR1xGAGR1AG
20 r10 R1=
21 1 2 gru0eld φG
22 20 21 eqeltrid φR1G
23 22 adantr φAOnR1G
24 23 a1d φAOnGR1G
25 simpl1 φAOnyOnyGR1yGsucyGφAOn
26 simpl2 φAOnyOnyGR1yGsucyGyOn
27 1 adantr φAOnGUniv
28 25 27 syl φAOnyOnyGR1yGsucyGGUniv
29 simpr φAOnyOnyGR1yGsucyGsucyG
30 sssucid ysucy
31 30 a1i φAOnyOnyGR1yGsucyGysucy
32 gruss GUnivsucyGysucyyG
33 28 29 31 32 syl3anc φAOnyOnyGR1yGsucyGyG
34 simpl3 φAOnyOnyGR1yGsucyGyGR1yG
35 33 34 mpd φAOnyOnyGR1yGsucyGR1yG
36 r1suc yOnR1sucy=𝒫R1y
37 36 3ad2ant2 φAOnyOnR1yGR1sucy=𝒫R1y
38 27 3ad2ant1 φAOnyOnR1yGGUniv
39 simp3 φAOnyOnR1yGR1yG
40 grupw GUnivR1yG𝒫R1yG
41 38 39 40 syl2anc φAOnyOnR1yG𝒫R1yG
42 37 41 eqeltrd φAOnyOnR1yGR1sucyG
43 25 26 35 42 syl3anc φAOnyOnyGR1yGsucyGR1sucyG
44 43 ex φAOnyOnyGR1yGsucyGR1sucyG
45 simpr φAOnLimxyxyGR1yGxGxG
46 simpl2 φAOnLimxyxyGR1yGxGLimx
47 r1lim xGLimxR1x=yxR1y
48 45 46 47 syl2anc φAOnLimxyxyGR1yGxGR1x=yxR1y
49 simpl1 φAOnLimxyxyGR1yGxGφAOn
50 49 27 syl φAOnLimxyxyGR1yGxGGUniv
51 simpl3 φAOnLimxyxyGR1yGxGyxyGR1yG
52 simpl1l φAOnLimxyxyGR1yGxGφ
53 simpl1 φLimxxGyxφ
54 53 1 syl φLimxxGyxGUniv
55 simpl3 φLimxxGyxxG
56 simpl2 φLimxxGyxLimx
57 limord LimxOrdx
58 56 57 syl φLimxxGyxOrdx
59 simpr φLimxxGyxyx
60 ordelss Ordxyxyx
61 58 59 60 syl2anc φLimxxGyxyx
62 gruss GUnivxGyxyG
63 54 55 61 62 syl3anc φLimxxGyxyG
64 63 ralrimiva φLimxxGyxyG
65 52 46 45 64 syl3anc φAOnLimxyxyGR1yGxGyxyG
66 ralim yxyGR1yGyxyGyxR1yG
67 51 65 66 sylc φAOnLimxyxyGR1yGxGyxR1yG
68 gruiun GUnivxGyxR1yGyxR1yG
69 50 45 67 68 syl3anc φAOnLimxyxyGR1yGxGyxR1yG
70 48 69 eqeltrd φAOnLimxyxyGR1yGxGR1xG
71 70 ex φAOnLimxyxyGR1yGxGR1xG
72 simpr φAOnAOn
73 7 11 15 19 24 44 71 72 tfindsd φAOnAGR1AG
74 3 73 mpd φAOnR1AG
75 r1fnon R1FnOn
76 75 fndmi domR1=On
77 76 eleq2i AdomR1AOn
78 ndmfv ¬AdomR1R1A=
79 77 78 sylnbir ¬AOnR1A=
80 79 adantl φ¬AOnR1A=
81 21 adantr φ¬AOnG
82 80 81 eqeltrd φ¬AOnR1AG
83 74 82 pm2.61dan φR1AG