Metamath Proof Explorer


Theorem gsum2d

Description: Write a sum over a two-dimensional region as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 8-Jun-2019)

Ref Expression
Hypotheses gsum2d.b B=BaseG
gsum2d.z 0˙=0G
gsum2d.g φGCMnd
gsum2d.a φAV
gsum2d.r φRelA
gsum2d.d φDW
gsum2d.s φdomAD
gsum2d.f φF:AB
gsum2d.w φfinSupp0˙F
Assertion gsum2d φGF=GjDGkAjjFk

Proof

Step Hyp Ref Expression
1 gsum2d.b B=BaseG
2 gsum2d.z 0˙=0G
3 gsum2d.g φGCMnd
4 gsum2d.a φAV
5 gsum2d.r φRelA
6 gsum2d.d φDW
7 gsum2d.s φdomAD
8 gsum2d.f φF:AB
9 gsum2d.w φfinSupp0˙F
10 1 2 3 4 5 6 7 8 9 gsum2dlem2 φGFAdomsupp0˙F=Gjdomsupp0˙FGkAjjFk
11 suppssdm Fsupp0˙domF
12 11 8 fssdm φFsupp0˙A
13 relss Fsupp0˙ARelARelsupp0˙F
14 12 5 13 sylc φRelsupp0˙F
15 relssdmrn Relsupp0˙FFsupp0˙domsupp0˙F×ransupp0˙F
16 ssv ransupp0˙FV
17 xpss2 ransupp0˙FVdomsupp0˙F×ransupp0˙Fdomsupp0˙F×V
18 16 17 ax-mp domsupp0˙F×ransupp0˙Fdomsupp0˙F×V
19 15 18 sstrdi Relsupp0˙FFsupp0˙domsupp0˙F×V
20 14 19 syl φFsupp0˙domsupp0˙F×V
21 12 20 ssind φFsupp0˙Adomsupp0˙F×V
22 df-res Adomsupp0˙F=Adomsupp0˙F×V
23 21 22 sseqtrrdi φFsupp0˙Adomsupp0˙F
24 1 2 3 4 8 23 9 gsumres φGFAdomsupp0˙F=GF
25 dmss Fsupp0˙Adomsupp0˙FdomA
26 12 25 syl φdomsupp0˙FdomA
27 26 7 sstrd φdomsupp0˙FD
28 27 resmptd φjDGkAjjFkdomsupp0˙F=jdomsupp0˙FGkAjjFk
29 28 oveq2d φGjDGkAjjFkdomsupp0˙F=Gjdomsupp0˙FGkAjjFk
30 1 2 3 4 5 6 7 8 9 gsum2dlem1 φGkAjjFkB
31 30 adantr φjDGkAjjFkB
32 31 fmpttd φjDGkAjjFk:DB
33 vex jV
34 vex kV
35 33 34 elimasn kAjjkA
36 35 biimpi kAjjkA
37 36 ad2antll φjDdomsupp0˙FkAjjkA
38 eldifn jDdomsupp0˙F¬jdomsupp0˙F
39 38 ad2antrl φjDdomsupp0˙FkAj¬jdomsupp0˙F
40 33 34 opeldm jksupp0˙Fjdomsupp0˙F
41 39 40 nsyl φjDdomsupp0˙FkAj¬jksupp0˙F
42 37 41 eldifd φjDdomsupp0˙FkAjjkAsupp0˙F
43 df-ov jFk=Fjk
44 ssidd φFsupp0˙Fsupp0˙
45 2 fvexi 0˙V
46 45 a1i φ0˙V
47 8 44 4 46 suppssr φjkAsupp0˙FFjk=0˙
48 43 47 eqtrid φjkAsupp0˙FjFk=0˙
49 42 48 syldan φjDdomsupp0˙FkAjjFk=0˙
50 49 anassrs φjDdomsupp0˙FkAjjFk=0˙
51 50 mpteq2dva φjDdomsupp0˙FkAjjFk=kAj0˙
52 51 oveq2d φjDdomsupp0˙FGkAjjFk=GkAj0˙
53 cmnmnd GCMndGMnd
54 3 53 syl φGMnd
55 imaexg AVAjV
56 4 55 syl φAjV
57 2 gsumz GMndAjVGkAj0˙=0˙
58 54 56 57 syl2anc φGkAj0˙=0˙
59 58 adantr φjDdomsupp0˙FGkAj0˙=0˙
60 52 59 eqtrd φjDdomsupp0˙FGkAjjFk=0˙
61 60 6 suppss2 φjDGkAjjFksupp0˙domsupp0˙F
62 funmpt FunjDGkAjjFk
63 62 a1i φFunjDGkAjjFk
64 9 fsuppimpd φFsupp0˙Fin
65 dmfi Fsupp0˙Findomsupp0˙FFin
66 64 65 syl φdomsupp0˙FFin
67 66 61 ssfid φjDGkAjjFksupp0˙Fin
68 6 mptexd φjDGkAjjFkV
69 isfsupp jDGkAjjFkV0˙VfinSupp0˙jDGkAjjFkFunjDGkAjjFkjDGkAjjFksupp0˙Fin
70 68 46 69 syl2anc φfinSupp0˙jDGkAjjFkFunjDGkAjjFkjDGkAjjFksupp0˙Fin
71 63 67 70 mpbir2and φfinSupp0˙jDGkAjjFk
72 1 2 3 6 32 61 71 gsumres φGjDGkAjjFkdomsupp0˙F=GjDGkAjjFk
73 29 72 eqtr3d φGjdomsupp0˙FGkAjjFk=GjDGkAjjFk
74 10 24 73 3eqtr3d φGF=GjDGkAjjFk