Metamath Proof Explorer


Theorem gsumzadd

Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzadd.b B = Base G
gsumzadd.0 0 ˙ = 0 G
gsumzadd.p + ˙ = + G
gsumzadd.z Z = Cntz G
gsumzadd.g φ G Mnd
gsumzadd.a φ A V
gsumzadd.fn φ finSupp 0 ˙ F
gsumzadd.hn φ finSupp 0 ˙ H
gsumzadd.s φ S SubMnd G
gsumzadd.c φ S Z S
gsumzadd.f φ F : A S
gsumzadd.h φ H : A S
Assertion gsumzadd φ G F + ˙ f H = G F + ˙ G H

Proof

Step Hyp Ref Expression
1 gsumzadd.b B = Base G
2 gsumzadd.0 0 ˙ = 0 G
3 gsumzadd.p + ˙ = + G
4 gsumzadd.z Z = Cntz G
5 gsumzadd.g φ G Mnd
6 gsumzadd.a φ A V
7 gsumzadd.fn φ finSupp 0 ˙ F
8 gsumzadd.hn φ finSupp 0 ˙ H
9 gsumzadd.s φ S SubMnd G
10 gsumzadd.c φ S Z S
11 gsumzadd.f φ F : A S
12 gsumzadd.h φ H : A S
13 eqid F H supp 0 ˙ = F H supp 0 ˙
14 1 submss S SubMnd G S B
15 9 14 syl φ S B
16 11 15 fssd φ F : A B
17 12 15 fssd φ H : A B
18 11 frnd φ ran F S
19 4 cntzidss S Z S ran F S ran F Z ran F
20 10 18 19 syl2anc φ ran F Z ran F
21 12 frnd φ ran H S
22 4 cntzidss S Z S ran H S ran H Z ran H
23 10 21 22 syl2anc φ ran H Z ran H
24 3 submcl S SubMnd G x S y S x + ˙ y S
25 24 3expb S SubMnd G x S y S x + ˙ y S
26 9 25 sylan φ x S y S x + ˙ y S
27 inidm A A = A
28 26 11 12 6 6 27 off φ F + ˙ f H : A S
29 28 frnd φ ran F + ˙ f H S
30 4 cntzidss S Z S ran F + ˙ f H S ran F + ˙ f H Z ran F + ˙ f H
31 10 29 30 syl2anc φ ran F + ˙ f H Z ran F + ˙ f H
32 10 adantr φ x A k A x S Z S
33 15 adantr φ x A k A x S B
34 5 adantr φ x A k A x G Mnd
35 vex x V
36 35 a1i φ x A k A x x V
37 9 adantr φ x A k A x S SubMnd G
38 simpl x A k A x x A
39 fssres H : A S x A H x : x S
40 12 38 39 syl2an φ x A k A x H x : x S
41 23 adantr φ x A k A x ran H Z ran H
42 resss H x H
43 42 rnssi ran H x ran H
44 4 cntzidss ran H Z ran H ran H x ran H ran H x Z ran H x
45 41 43 44 sylancl φ x A k A x ran H x Z ran H x
46 12 ffund φ Fun H
47 funres Fun H Fun H x
48 46 47 syl φ Fun H x
49 48 adantr φ x A k A x Fun H x
50 8 fsuppimpd φ H supp 0 ˙ Fin
51 50 adantr φ x A k A x H supp 0 ˙ Fin
52 fex H : A S A V H V
53 12 6 52 syl2anc φ H V
54 2 fvexi 0 ˙ V
55 ressuppss H V 0 ˙ V H x supp 0 ˙ H supp 0 ˙
56 53 54 55 sylancl φ H x supp 0 ˙ H supp 0 ˙
57 56 adantr φ x A k A x H x supp 0 ˙ H supp 0 ˙
58 51 57 ssfid φ x A k A x H x supp 0 ˙ Fin
59 resfunexg Fun H x V H x V
60 46 35 59 sylancl φ H x V
61 isfsupp H x V 0 ˙ V finSupp 0 ˙ H x Fun H x H x supp 0 ˙ Fin
62 60 54 61 sylancl φ finSupp 0 ˙ H x Fun H x H x supp 0 ˙ Fin
63 62 adantr φ x A k A x finSupp 0 ˙ H x Fun H x H x supp 0 ˙ Fin
64 49 58 63 mpbir2and φ x A k A x finSupp 0 ˙ H x
65 2 4 34 36 37 40 45 64 gsumzsubmcl φ x A k A x G H x S
66 65 snssd φ x A k A x G H x S
67 1 4 cntz2ss S B G H x S Z S Z G H x
68 33 66 67 syl2anc φ x A k A x Z S Z G H x
69 32 68 sstrd φ x A k A x S Z G H x
70 eldifi k A x k A
71 70 adantl x A k A x k A
72 ffvelrn F : A S k A F k S
73 11 71 72 syl2an φ x A k A x F k S
74 69 73 sseldd φ x A k A x F k Z G H x
75 1 2 3 4 5 6 7 8 13 16 17 20 23 31 74 gsumzaddlem φ G F + ˙ f H = G F + ˙ G H