Metamath Proof Explorer


Theorem gsumzadd

Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)

Ref Expression
Hypotheses gsumzadd.b B=BaseG
gsumzadd.0 0˙=0G
gsumzadd.p +˙=+G
gsumzadd.z Z=CntzG
gsumzadd.g φGMnd
gsumzadd.a φAV
gsumzadd.fn φfinSupp0˙F
gsumzadd.hn φfinSupp0˙H
gsumzadd.s φSSubMndG
gsumzadd.c φSZS
gsumzadd.f φF:AS
gsumzadd.h φH:AS
Assertion gsumzadd φGF+˙fH=GF+˙GH

Proof

Step Hyp Ref Expression
1 gsumzadd.b B=BaseG
2 gsumzadd.0 0˙=0G
3 gsumzadd.p +˙=+G
4 gsumzadd.z Z=CntzG
5 gsumzadd.g φGMnd
6 gsumzadd.a φAV
7 gsumzadd.fn φfinSupp0˙F
8 gsumzadd.hn φfinSupp0˙H
9 gsumzadd.s φSSubMndG
10 gsumzadd.c φSZS
11 gsumzadd.f φF:AS
12 gsumzadd.h φH:AS
13 eqid FHsupp0˙=FHsupp0˙
14 1 submss SSubMndGSB
15 9 14 syl φSB
16 11 15 fssd φF:AB
17 12 15 fssd φH:AB
18 11 frnd φranFS
19 4 cntzidss SZSranFSranFZranF
20 10 18 19 syl2anc φranFZranF
21 12 frnd φranHS
22 4 cntzidss SZSranHSranHZranH
23 10 21 22 syl2anc φranHZranH
24 3 submcl SSubMndGxSySx+˙yS
25 24 3expb SSubMndGxSySx+˙yS
26 9 25 sylan φxSySx+˙yS
27 inidm AA=A
28 26 11 12 6 6 27 off φF+˙fH:AS
29 28 frnd φranF+˙fHS
30 4 cntzidss SZSranF+˙fHSranF+˙fHZranF+˙fH
31 10 29 30 syl2anc φranF+˙fHZranF+˙fH
32 10 adantr φxAkAxSZS
33 15 adantr φxAkAxSB
34 5 adantr φxAkAxGMnd
35 vex xV
36 35 a1i φxAkAxxV
37 9 adantr φxAkAxSSubMndG
38 simpl xAkAxxA
39 fssres H:ASxAHx:xS
40 12 38 39 syl2an φxAkAxHx:xS
41 23 adantr φxAkAxranHZranH
42 resss HxH
43 42 rnssi ranHxranH
44 4 cntzidss ranHZranHranHxranHranHxZranHx
45 41 43 44 sylancl φxAkAxranHxZranHx
46 12 ffund φFunH
47 46 funresd φFunHx
48 47 adantr φxAkAxFunHx
49 8 fsuppimpd φHsupp0˙Fin
50 49 adantr φxAkAxHsupp0˙Fin
51 12 6 fexd φHV
52 2 fvexi 0˙V
53 ressuppss HV0˙VHxsupp0˙Hsupp0˙
54 51 52 53 sylancl φHxsupp0˙Hsupp0˙
55 54 adantr φxAkAxHxsupp0˙Hsupp0˙
56 50 55 ssfid φxAkAxHxsupp0˙Fin
57 resfunexg FunHxVHxV
58 46 35 57 sylancl φHxV
59 isfsupp HxV0˙VfinSupp0˙HxFunHxHxsupp0˙Fin
60 58 52 59 sylancl φfinSupp0˙HxFunHxHxsupp0˙Fin
61 60 adantr φxAkAxfinSupp0˙HxFunHxHxsupp0˙Fin
62 48 56 61 mpbir2and φxAkAxfinSupp0˙Hx
63 2 4 34 36 37 40 45 62 gsumzsubmcl φxAkAxGHxS
64 63 snssd φxAkAxGHxS
65 1 4 cntz2ss SBGHxSZSZGHx
66 33 64 65 syl2anc φxAkAxZSZGHx
67 32 66 sstrd φxAkAxSZGHx
68 eldifi kAxkA
69 68 adantl xAkAxkA
70 ffvelcdm F:ASkAFkS
71 11 69 70 syl2an φxAkAxFkS
72 67 71 sseldd φxAkAxFkZGHx
73 1 2 3 4 5 6 7 8 13 16 17 20 23 31 72 gsumzaddlem φGF+˙fH=GF+˙GH