Metamath Proof Explorer


Theorem hdmapglem7b

Description: Lemma for hdmapg . (Contributed by NM, 14-Jun-2015)

Ref Expression
Hypotheses hdmapglem7.h H = LHyp K
hdmapglem7.e E = I Base K I LTrn K W
hdmapglem7.o O = ocH K W
hdmapglem7.u U = DVecH K W
hdmapglem7.v V = Base U
hdmapglem7.p + ˙ = + U
hdmapglem7.q · ˙ = U
hdmapglem7.r R = Scalar U
hdmapglem7.b B = Base R
hdmapglem7.a ˙ = LSSum U
hdmapglem7.n N = LSpan U
hdmapglem7.k φ K HL W H
hdmapglem7.x φ X V
hdmapglem7.t × ˙ = R
hdmapglem7.z 0 ˙ = 0 R
hdmapglem7.c ˙ = + R
hdmapglem7.s S = HDMap K W
hdmapglem7.g G = HGMap K W
hdmapglem7b.u φ x O E
hdmapglem7b.v φ y O E
hdmapglem7b.k φ m B
hdmapglem7b.l φ n B
Assertion hdmapglem7b φ S m · ˙ E + ˙ x n · ˙ E + ˙ y = n × ˙ G m ˙ S x y

Proof

Step Hyp Ref Expression
1 hdmapglem7.h H = LHyp K
2 hdmapglem7.e E = I Base K I LTrn K W
3 hdmapglem7.o O = ocH K W
4 hdmapglem7.u U = DVecH K W
5 hdmapglem7.v V = Base U
6 hdmapglem7.p + ˙ = + U
7 hdmapglem7.q · ˙ = U
8 hdmapglem7.r R = Scalar U
9 hdmapglem7.b B = Base R
10 hdmapglem7.a ˙ = LSSum U
11 hdmapglem7.n N = LSpan U
12 hdmapglem7.k φ K HL W H
13 hdmapglem7.x φ X V
14 hdmapglem7.t × ˙ = R
15 hdmapglem7.z 0 ˙ = 0 R
16 hdmapglem7.c ˙ = + R
17 hdmapglem7.s S = HDMap K W
18 hdmapglem7.g G = HGMap K W
19 hdmapglem7b.u φ x O E
20 hdmapglem7b.v φ y O E
21 hdmapglem7b.k φ m B
22 hdmapglem7b.l φ n B
23 1 4 12 dvhlmod φ U LMod
24 eqid Base K = Base K
25 eqid LTrn K W = LTrn K W
26 eqid 0 U = 0 U
27 1 24 25 4 5 26 2 12 dvheveccl φ E V 0 U
28 27 eldifad φ E V
29 5 8 7 9 lmodvscl U LMod n B E V n · ˙ E V
30 23 22 28 29 syl3anc φ n · ˙ E V
31 28 snssd φ E V
32 1 4 5 3 dochssv K HL W H E V O E V
33 12 31 32 syl2anc φ O E V
34 33 20 sseldd φ y V
35 5 6 lmodvacl U LMod n · ˙ E V y V n · ˙ E + ˙ y V
36 23 30 34 35 syl3anc φ n · ˙ E + ˙ y V
37 33 19 sseldd φ x V
38 1 4 5 6 7 8 9 16 14 17 18 12 36 28 37 21 hdmapgln2 φ S m · ˙ E + ˙ x n · ˙ E + ˙ y = S E n · ˙ E + ˙ y × ˙ G m ˙ S x n · ˙ E + ˙ y
39 1 4 5 6 7 8 9 16 14 17 12 28 34 28 22 hdmapln1 φ S E n · ˙ E + ˙ y = n × ˙ S E E ˙ S E y
40 eqid HVMap K W = HVMap K W
41 eqid 1 R = 1 R
42 1 2 40 17 12 4 8 41 hdmapevec2 φ S E E = 1 R
43 42 oveq2d φ n × ˙ S E E = n × ˙ 1 R
44 8 lmodring U LMod R Ring
45 23 44 syl φ R Ring
46 9 14 41 ringridm R Ring n B n × ˙ 1 R = n
47 45 22 46 syl2anc φ n × ˙ 1 R = n
48 43 47 eqtrd φ n × ˙ S E E = n
49 1 2 3 4 5 8 9 14 15 17 12 20 hdmapinvlem1 φ S E y = 0 ˙
50 48 49 oveq12d φ n × ˙ S E E ˙ S E y = n ˙ 0 ˙
51 ringgrp R Ring R Grp
52 45 51 syl φ R Grp
53 9 16 15 grprid R Grp n B n ˙ 0 ˙ = n
54 52 22 53 syl2anc φ n ˙ 0 ˙ = n
55 39 50 54 3eqtrd φ S E n · ˙ E + ˙ y = n
56 55 oveq1d φ S E n · ˙ E + ˙ y × ˙ G m = n × ˙ G m
57 1 4 5 6 7 8 9 16 14 17 12 28 34 37 22 hdmapln1 φ S x n · ˙ E + ˙ y = n × ˙ S x E ˙ S x y
58 1 2 3 4 5 8 9 14 15 17 12 19 hdmapinvlem2 φ S x E = 0 ˙
59 58 oveq2d φ n × ˙ S x E = n × ˙ 0 ˙
60 9 14 15 ringrz R Ring n B n × ˙ 0 ˙ = 0 ˙
61 45 22 60 syl2anc φ n × ˙ 0 ˙ = 0 ˙
62 59 61 eqtrd φ n × ˙ S x E = 0 ˙
63 62 oveq1d φ n × ˙ S x E ˙ S x y = 0 ˙ ˙ S x y
64 1 4 5 8 9 17 12 34 37 hdmapipcl φ S x y B
65 9 16 15 grplid R Grp S x y B 0 ˙ ˙ S x y = S x y
66 52 64 65 syl2anc φ 0 ˙ ˙ S x y = S x y
67 57 63 66 3eqtrd φ S x n · ˙ E + ˙ y = S x y
68 56 67 oveq12d φ S E n · ˙ E + ˙ y × ˙ G m ˙ S x n · ˙ E + ˙ y = n × ˙ G m ˙ S x y
69 38 68 eqtrd φ S m · ˙ E + ˙ x n · ˙ E + ˙ y = n × ˙ G m ˙ S x y