Metamath Proof Explorer


Theorem hdmapip0

Description: Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0.h H=LHypK
hdmapip0.u U=DVecHKW
hdmapip0.v V=BaseU
hdmapip0.o 0˙=0U
hdmapip0.r R=ScalarU
hdmapip0.z Z=0R
hdmapip0.s S=HDMapKW
hdmapip0.k φKHLWH
hdmapip0.x φXV
Assertion hdmapip0 φSXX=ZX=0˙

Proof

Step Hyp Ref Expression
1 hdmapip0.h H=LHypK
2 hdmapip0.u U=DVecHKW
3 hdmapip0.v V=BaseU
4 hdmapip0.o 0˙=0U
5 hdmapip0.r R=ScalarU
6 hdmapip0.z Z=0R
7 hdmapip0.s S=HDMapKW
8 hdmapip0.k φKHLWH
9 hdmapip0.x φXV
10 eqid ocHKW=ocHKW
11 8 adantr φX0˙KHLWH
12 9 anim1i φX0˙XVX0˙
13 eldifsn XV0˙XVX0˙
14 12 13 sylibr φX0˙XV0˙
15 1 10 2 3 4 11 14 dochnel φX0˙¬XocHKWX
16 eqid LFnlU=LFnlU
17 eqid LKerU=LKerU
18 1 2 8 dvhlmod φULMod
19 eqid LCDualKW=LCDualKW
20 eqid BaseLCDualKW=BaseLCDualKW
21 1 2 3 19 20 7 8 9 hdmapcl φSXBaseLCDualKW
22 1 19 20 2 16 8 21 lcdvbaselfl φSXLFnlU
23 3 5 6 16 17 18 22 9 ellkr2 φXLKerUSXSXX=Z
24 23 biimpar φSXX=ZXLKerUSX
25 1 10 2 3 16 17 7 8 9 hdmaplkr φLKerUSX=ocHKWX
26 25 adantr φSXX=ZLKerUSX=ocHKWX
27 24 26 eleqtrd φSXX=ZXocHKWX
28 27 ex φSXX=ZXocHKWX
29 28 adantr φX0˙SXX=ZXocHKWX
30 15 29 mtod φX0˙¬SXX=Z
31 30 neqned φX0˙SXXZ
32 31 ex φX0˙SXXZ
33 32 necon4d φSXX=ZX=0˙
34 33 imp φSXX=ZX=0˙
35 fveq2 X=0˙SXX=SX0˙
36 5 6 4 16 lfl0 ULModSXLFnlUSX0˙=Z
37 18 22 36 syl2anc φSX0˙=Z
38 35 37 sylan9eqr φX=0˙SXX=Z
39 34 38 impbida φSXX=ZX=0˙