Metamath Proof Explorer


Theorem hdmapip0

Description: Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0.h H = LHyp K
hdmapip0.u U = DVecH K W
hdmapip0.v V = Base U
hdmapip0.o 0 ˙ = 0 U
hdmapip0.r R = Scalar U
hdmapip0.z Z = 0 R
hdmapip0.s S = HDMap K W
hdmapip0.k φ K HL W H
hdmapip0.x φ X V
Assertion hdmapip0 φ S X X = Z X = 0 ˙

Proof

Step Hyp Ref Expression
1 hdmapip0.h H = LHyp K
2 hdmapip0.u U = DVecH K W
3 hdmapip0.v V = Base U
4 hdmapip0.o 0 ˙ = 0 U
5 hdmapip0.r R = Scalar U
6 hdmapip0.z Z = 0 R
7 hdmapip0.s S = HDMap K W
8 hdmapip0.k φ K HL W H
9 hdmapip0.x φ X V
10 eqid ocH K W = ocH K W
11 8 adantr φ X 0 ˙ K HL W H
12 9 anim1i φ X 0 ˙ X V X 0 ˙
13 eldifsn X V 0 ˙ X V X 0 ˙
14 12 13 sylibr φ X 0 ˙ X V 0 ˙
15 1 10 2 3 4 11 14 dochnel φ X 0 ˙ ¬ X ocH K W X
16 eqid LFnl U = LFnl U
17 eqid LKer U = LKer U
18 1 2 8 dvhlmod φ U LMod
19 eqid LCDual K W = LCDual K W
20 eqid Base LCDual K W = Base LCDual K W
21 1 2 3 19 20 7 8 9 hdmapcl φ S X Base LCDual K W
22 1 19 20 2 16 8 21 lcdvbaselfl φ S X LFnl U
23 3 5 6 16 17 18 22 9 ellkr2 φ X LKer U S X S X X = Z
24 23 biimpar φ S X X = Z X LKer U S X
25 1 10 2 3 16 17 7 8 9 hdmaplkr φ LKer U S X = ocH K W X
26 25 adantr φ S X X = Z LKer U S X = ocH K W X
27 24 26 eleqtrd φ S X X = Z X ocH K W X
28 27 ex φ S X X = Z X ocH K W X
29 28 adantr φ X 0 ˙ S X X = Z X ocH K W X
30 15 29 mtod φ X 0 ˙ ¬ S X X = Z
31 30 neqned φ X 0 ˙ S X X Z
32 31 ex φ X 0 ˙ S X X Z
33 32 necon4d φ S X X = Z X = 0 ˙
34 33 imp φ S X X = Z X = 0 ˙
35 fveq2 X = 0 ˙ S X X = S X 0 ˙
36 5 6 4 16 lfl0 U LMod S X LFnl U S X 0 ˙ = Z
37 18 22 36 syl2anc φ S X 0 ˙ = Z
38 35 37 sylan9eqr φ X = 0 ˙ S X X = Z
39 34 38 impbida φ S X X = Z X = 0 ˙