Metamath Proof Explorer


Theorem hgmapmul

Description: Part 15 of Baer p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hgmapmul.h H=LHypK
hgmapmul.u U=DVecHKW
hgmapmul.r R=ScalarU
hgmapmul.b B=BaseR
hgmapmul.t ·˙=R
hgmapmul.g G=HGMapKW
hgmapmul.k φKHLWH
hgmapmul.x φXB
hgmapmul.y φYB
Assertion hgmapmul φGX·˙Y=GY·˙GX

Proof

Step Hyp Ref Expression
1 hgmapmul.h H=LHypK
2 hgmapmul.u U=DVecHKW
3 hgmapmul.r R=ScalarU
4 hgmapmul.b B=BaseR
5 hgmapmul.t ·˙=R
6 hgmapmul.g G=HGMapKW
7 hgmapmul.k φKHLWH
8 hgmapmul.x φXB
9 hgmapmul.y φYB
10 eqid BaseU=BaseU
11 eqid 0U=0U
12 1 2 10 11 7 dvh1dim φtBaseUt0U
13 eqid LCDualKW=LCDualKW
14 1 13 7 lcdlmod φLCDualKWLMod
15 14 3ad2ant1 φtBaseUt0ULCDualKWLMod
16 eqid ScalarLCDualKW=ScalarLCDualKW
17 eqid BaseScalarLCDualKW=BaseScalarLCDualKW
18 1 2 3 4 13 16 17 6 7 8 hgmapdcl φGXBaseScalarLCDualKW
19 18 3ad2ant1 φtBaseUt0UGXBaseScalarLCDualKW
20 1 2 3 4 13 16 17 6 7 9 hgmapdcl φGYBaseScalarLCDualKW
21 20 3ad2ant1 φtBaseUt0UGYBaseScalarLCDualKW
22 eqid BaseLCDualKW=BaseLCDualKW
23 eqid HDMapKW=HDMapKW
24 7 3ad2ant1 φtBaseUt0UKHLWH
25 simp2 φtBaseUt0UtBaseU
26 1 2 10 13 22 23 24 25 hdmapcl φtBaseUt0UHDMapKWtBaseLCDualKW
27 eqid LCDualKW=LCDualKW
28 eqid ScalarLCDualKW=ScalarLCDualKW
29 22 16 27 17 28 lmodvsass LCDualKWLModGXBaseScalarLCDualKWGYBaseScalarLCDualKWHDMapKWtBaseLCDualKWGXScalarLCDualKWGYLCDualKWHDMapKWt=GXLCDualKWGYLCDualKWHDMapKWt
30 15 19 21 26 29 syl13anc φtBaseUt0UGXScalarLCDualKWGYLCDualKWHDMapKWt=GXLCDualKWGYLCDualKWHDMapKWt
31 1 2 7 dvhlmod φULMod
32 31 3ad2ant1 φtBaseUt0UULMod
33 8 3ad2ant1 φtBaseUt0UXB
34 9 3ad2ant1 φtBaseUt0UYB
35 eqid U=U
36 10 3 35 4 5 lmodvsass ULModXBYBtBaseUX·˙YUt=XUYUt
37 32 33 34 25 36 syl13anc φtBaseUt0UX·˙YUt=XUYUt
38 37 fveq2d φtBaseUt0UHDMapKWX·˙YUt=HDMapKWXUYUt
39 10 3 35 4 lmodvscl ULModYBtBaseUYUtBaseU
40 32 34 25 39 syl3anc φtBaseUt0UYUtBaseU
41 1 2 10 35 3 4 13 27 23 6 24 40 33 hgmapvs φtBaseUt0UHDMapKWXUYUt=GXLCDualKWHDMapKWYUt
42 1 2 10 35 3 4 13 27 23 6 24 25 34 hgmapvs φtBaseUt0UHDMapKWYUt=GYLCDualKWHDMapKWt
43 42 oveq2d φtBaseUt0UGXLCDualKWHDMapKWYUt=GXLCDualKWGYLCDualKWHDMapKWt
44 38 41 43 3eqtrd φtBaseUt0UHDMapKWX·˙YUt=GXLCDualKWGYLCDualKWHDMapKWt
45 3 4 5 lmodmcl ULModXBYBX·˙YB
46 31 8 9 45 syl3anc φX·˙YB
47 46 3ad2ant1 φtBaseUt0UX·˙YB
48 1 2 10 35 3 4 13 27 23 6 24 25 47 hgmapvs φtBaseUt0UHDMapKWX·˙YUt=GX·˙YLCDualKWHDMapKWt
49 30 44 48 3eqtr2rd φtBaseUt0UGX·˙YLCDualKWHDMapKWt=GXScalarLCDualKWGYLCDualKWHDMapKWt
50 eqid 0LCDualKW=0LCDualKW
51 1 13 7 lcdlvec φLCDualKWLVec
52 51 3ad2ant1 φtBaseUt0ULCDualKWLVec
53 1 2 3 4 13 16 17 6 7 46 hgmapdcl φGX·˙YBaseScalarLCDualKW
54 53 3ad2ant1 φtBaseUt0UGX·˙YBaseScalarLCDualKW
55 16 17 28 lmodmcl LCDualKWLModGXBaseScalarLCDualKWGYBaseScalarLCDualKWGXScalarLCDualKWGYBaseScalarLCDualKW
56 14 18 20 55 syl3anc φGXScalarLCDualKWGYBaseScalarLCDualKW
57 56 3ad2ant1 φtBaseUt0UGXScalarLCDualKWGYBaseScalarLCDualKW
58 simp3 φtBaseUt0Ut0U
59 1 2 10 11 13 50 23 24 25 hdmapeq0 φtBaseUt0UHDMapKWt=0LCDualKWt=0U
60 59 necon3bid φtBaseUt0UHDMapKWt0LCDualKWt0U
61 58 60 mpbird φtBaseUt0UHDMapKWt0LCDualKW
62 22 27 16 17 50 52 54 57 26 61 lvecvscan2 φtBaseUt0UGX·˙YLCDualKWHDMapKWt=GXScalarLCDualKWGYLCDualKWHDMapKWtGX·˙Y=GXScalarLCDualKWGY
63 49 62 mpbid φtBaseUt0UGX·˙Y=GXScalarLCDualKWGY
64 63 rexlimdv3a φtBaseUt0UGX·˙Y=GXScalarLCDualKWGY
65 12 64 mpd φGX·˙Y=GXScalarLCDualKWGY
66 1 2 3 4 6 7 8 hgmapcl φGXB
67 1 2 3 4 6 7 9 hgmapcl φGYB
68 1 2 3 4 5 13 16 28 7 66 67 lcdsmul φGXScalarLCDualKWGY=GY·˙GX
69 65 68 eqtrd φGX·˙Y=GY·˙GX