Metamath Proof Explorer


Theorem hlhillcs

Description: The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015)

Ref Expression
Hypotheses hlhillcs.h H=LHypK
hlhillcs.i I=DIsoHKW
hlhillcs.u U=HLHilKW
hlhillcs.c C=ClSubSpU
hlhillcs.k φKHLWH
Assertion hlhillcs φC=ranI

Proof

Step Hyp Ref Expression
1 hlhillcs.h H=LHypK
2 hlhillcs.i I=DIsoHKW
3 hlhillcs.u U=HLHilKW
4 hlhillcs.c C=ClSubSpU
5 hlhillcs.k φKHLWH
6 3 fvexi UV
7 eqid ocvU=ocvU
8 7 4 iscss UVxCx=ocvUocvUx
9 6 8 mp1i φxCx=ocvUocvUx
10 9 biimpa φxCx=ocvUocvUx
11 eqid BaseU=BaseU
12 11 4 cssss xCxBaseU
13 eqid DVecHKW=DVecHKW
14 eqid BaseDVecHKW=BaseDVecHKW
15 eqid ocHKW=ocHKW
16 5 adantr φxBaseUKHLWH
17 1 3 5 13 14 hlhilbase φBaseDVecHKW=BaseU
18 17 sseq2d φxBaseDVecHKWxBaseU
19 18 biimpar φxBaseUxBaseDVecHKW
20 1 2 13 14 15 16 19 dochoccl φxBaseUxranIocHKWocHKWx=x
21 eqcom x=ocvUocvUxocvUocvUx=x
22 1 13 3 16 14 15 7 19 hlhilocv φxBaseUocvUx=ocHKWx
23 22 fveq2d φxBaseUocvUocvUx=ocvUocHKWx
24 1 13 14 15 dochssv KHLWHxBaseDVecHKWocHKWxBaseDVecHKW
25 16 19 24 syl2anc φxBaseUocHKWxBaseDVecHKW
26 1 13 3 16 14 15 7 25 hlhilocv φxBaseUocvUocHKWx=ocHKWocHKWx
27 23 26 eqtrd φxBaseUocvUocvUx=ocHKWocHKWx
28 27 eqeq1d φxBaseUocvUocvUx=xocHKWocHKWx=x
29 21 28 bitrid φxBaseUx=ocvUocvUxocHKWocHKWx=x
30 20 29 bitr4d φxBaseUxranIx=ocvUocvUx
31 12 30 sylan2 φxCxranIx=ocvUocvUx
32 10 31 mpbird φxCxranI
33 simpr φxranIxranI
34 5 adantr φxranIKHLWH
35 1 13 2 14 dihrnss KHLWHxranIxBaseDVecHKW
36 5 35 sylan φxranIxBaseDVecHKW
37 1 13 3 34 14 15 7 36 hlhilocv φxranIocvUx=ocHKWx
38 37 fveq2d φxranIocvUocvUx=ocvUocHKWx
39 34 36 24 syl2anc φxranIocHKWxBaseDVecHKW
40 1 13 3 34 14 15 7 39 hlhilocv φxranIocvUocHKWx=ocHKWocHKWx
41 38 40 eqtrd φxranIocvUocvUx=ocHKWocHKWx
42 41 eqeq1d φxranIocvUocvUx=xocHKWocHKWx=x
43 42 biimpar φxranIocHKWocHKWx=xocvUocvUx=x
44 43 eqcomd φxranIocHKWocHKWx=xx=ocvUocvUx
45 44 ex φxranIocHKWocHKWx=xx=ocvUocvUx
46 1 2 13 14 15 34 36 dochoccl φxranIxranIocHKWocHKWx=x
47 6 8 mp1i φxranIxCx=ocvUocvUx
48 45 46 47 3imtr4d φxranIxranIxC
49 33 48 mpd φxranIxC
50 32 49 impbida φxCxranI
51 50 eqrdv φC=ranI