Metamath Proof Explorer


Theorem i1faddlem

Description: Decompose the preimage of a sum. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses i1fadd.1 φFdom1
i1fadd.2 φGdom1
Assertion i1faddlem φAF+fG-1A=yranGF-1AyG-1y

Proof

Step Hyp Ref Expression
1 i1fadd.1 φFdom1
2 i1fadd.2 φGdom1
3 i1ff Fdom1F:
4 1 3 syl φF:
5 4 ffnd φFFn
6 i1ff Gdom1G:
7 2 6 syl φG:
8 7 ffnd φGFn
9 reex V
10 9 a1i φV
11 inidm =
12 5 8 10 10 11 offn φF+fGFn
13 12 adantr φAF+fGFn
14 fniniseg F+fGFnzF+fG-1AzF+fGz=A
15 13 14 syl φAzF+fG-1AzF+fGz=A
16 8 ad2antrr φAzF+fGz=AGFn
17 simprl φAzF+fGz=Az
18 fnfvelrn GFnzGzranG
19 16 17 18 syl2anc φAzF+fGz=AGzranG
20 simprr φAzF+fGz=AF+fGz=A
21 eqidd φzFz=Fz
22 eqidd φzGz=Gz
23 5 8 10 10 11 21 22 ofval φzF+fGz=Fz+Gz
24 23 ad2ant2r φAzF+fGz=AF+fGz=Fz+Gz
25 20 24 eqtr3d φAzF+fGz=AA=Fz+Gz
26 25 oveq1d φAzF+fGz=AAGz=Fz+Gz-Gz
27 ax-resscn
28 fss F:F:
29 4 27 28 sylancl φF:
30 29 ad2antrr φAzF+fGz=AF:
31 30 17 ffvelcdmd φAzF+fGz=AFz
32 fss G:G:
33 7 27 32 sylancl φG:
34 33 ad2antrr φAzF+fGz=AG:
35 34 17 ffvelcdmd φAzF+fGz=AGz
36 31 35 pncand φAzF+fGz=AFz+Gz-Gz=Fz
37 26 36 eqtr2d φAzF+fGz=AFz=AGz
38 5 ad2antrr φAzF+fGz=AFFn
39 fniniseg FFnzF-1AGzzFz=AGz
40 38 39 syl φAzF+fGz=AzF-1AGzzFz=AGz
41 17 37 40 mpbir2and φAzF+fGz=AzF-1AGz
42 eqidd φAzF+fGz=AGz=Gz
43 fniniseg GFnzG-1GzzGz=Gz
44 16 43 syl φAzF+fGz=AzG-1GzzGz=Gz
45 17 42 44 mpbir2and φAzF+fGz=AzG-1Gz
46 41 45 elind φAzF+fGz=AzF-1AGzG-1Gz
47 oveq2 y=GzAy=AGz
48 47 sneqd y=GzAy=AGz
49 48 imaeq2d y=GzF-1Ay=F-1AGz
50 sneq y=Gzy=Gz
51 50 imaeq2d y=GzG-1y=G-1Gz
52 49 51 ineq12d y=GzF-1AyG-1y=F-1AGzG-1Gz
53 52 eleq2d y=GzzF-1AyG-1yzF-1AGzG-1Gz
54 53 rspcev GzranGzF-1AGzG-1GzyranGzF-1AyG-1y
55 19 46 54 syl2anc φAzF+fGz=AyranGzF-1AyG-1y
56 55 ex φAzF+fGz=AyranGzF-1AyG-1y
57 elin zF-1AyG-1yzF-1AyzG-1y
58 5 adantr φAFFn
59 fniniseg FFnzF-1AyzFz=Ay
60 58 59 syl φAzF-1AyzFz=Ay
61 8 adantr φAGFn
62 fniniseg GFnzG-1yzGz=y
63 61 62 syl φAzG-1yzGz=y
64 60 63 anbi12d φAzF-1AyzG-1yzFz=AyzGz=y
65 anandi zFz=AyGz=yzFz=AyzGz=y
66 simprl φAzFz=AyGz=yz
67 23 ad2ant2r φAzFz=AyGz=yF+fGz=Fz+Gz
68 simprrl φAzFz=AyGz=yFz=Ay
69 simprrr φAzFz=AyGz=yGz=y
70 68 69 oveq12d φAzFz=AyGz=yFz+Gz=A-y+y
71 simplr φAzFz=AyGz=yA
72 33 ad2antrr φAzFz=AyGz=yG:
73 72 66 ffvelcdmd φAzFz=AyGz=yGz
74 69 73 eqeltrrd φAzFz=AyGz=yy
75 71 74 npcand φAzFz=AyGz=yA-y+y=A
76 67 70 75 3eqtrd φAzFz=AyGz=yF+fGz=A
77 66 76 jca φAzFz=AyGz=yzF+fGz=A
78 77 ex φAzFz=AyGz=yzF+fGz=A
79 65 78 biimtrrid φAzFz=AyzGz=yzF+fGz=A
80 64 79 sylbid φAzF-1AyzG-1yzF+fGz=A
81 57 80 biimtrid φAzF-1AyG-1yzF+fGz=A
82 81 rexlimdvw φAyranGzF-1AyG-1yzF+fGz=A
83 56 82 impbid φAzF+fGz=AyranGzF-1AyG-1y
84 15 83 bitrd φAzF+fG-1AyranGzF-1AyG-1y
85 eliun zyranGF-1AyG-1yyranGzF-1AyG-1y
86 84 85 bitr4di φAzF+fG-1AzyranGF-1AyG-1y
87 86 eqrdv φAF+fG-1A=yranGF-1AyG-1y