Metamath Proof Explorer


Theorem i1fibl

Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Assertion i1fibl Fdom1F𝐿1

Proof

Step Hyp Ref Expression
1 i1ff Fdom1F:
2 1 feqmptd Fdom1F=xFx
3 i1fmbf Fdom1FMblFn
4 2 3 eqeltrrd Fdom1xFxMblFn
5 simpr Fdom1xx
6 5 biantrurd Fdom1x0Fxx0Fx
7 6 ifbid Fdom1xif0FxFx0=ifx0FxFx0
8 7 mpteq2dva Fdom1xif0FxFx0=xifx0FxFx0
9 8 fveq2d Fdom12xif0FxFx0=2xifx0FxFx0
10 eqid xif0FxFx0=xif0FxFx0
11 10 i1fpos Fdom1xif0FxFx0dom1
12 0re 0
13 1 ffvelcdmda Fdom1xFx
14 max1 0Fx0if0FxFx0
15 12 13 14 sylancr Fdom1x0if0FxFx0
16 15 ralrimiva Fdom1x0if0FxFx0
17 reex V
18 17 a1i Fdom1V
19 12 a1i Fdom1x0
20 fvex FxV
21 c0ex 0V
22 20 21 ifex if0FxFx0V
23 22 a1i Fdom1xif0FxFx0V
24 fconstmpt ×0=x0
25 24 a1i Fdom1×0=x0
26 eqidd Fdom1xif0FxFx0=xif0FxFx0
27 18 19 23 25 26 ofrfval2 Fdom1×0fxif0FxFx0x0if0FxFx0
28 16 27 mpbird Fdom1×0fxif0FxFx0
29 ax-resscn
30 29 a1i Fdom1
31 22 10 fnmpti xif0FxFx0Fn
32 31 a1i Fdom1xif0FxFx0Fn
33 30 32 0pledm Fdom10𝑝fxif0FxFx0×0fxif0FxFx0
34 28 33 mpbird Fdom10𝑝fxif0FxFx0
35 itg2itg1 xif0FxFx0dom10𝑝fxif0FxFx02xif0FxFx0=1xif0FxFx0
36 11 34 35 syl2anc Fdom12xif0FxFx0=1xif0FxFx0
37 9 36 eqtr3d Fdom12xifx0FxFx0=1xif0FxFx0
38 itg1cl xif0FxFx0dom11xif0FxFx0
39 11 38 syl Fdom11xif0FxFx0
40 37 39 eqeltrd Fdom12xifx0FxFx0
41 5 biantrurd Fdom1x0Fxx0Fx
42 41 ifbid Fdom1xif0FxFx0=ifx0FxFx0
43 42 mpteq2dva Fdom1xif0FxFx0=xifx0FxFx0
44 43 fveq2d Fdom12xif0FxFx0=2xifx0FxFx0
45 neg1rr 1
46 45 a1i Fdom1x1
47 fconstmpt ×1=x1
48 47 a1i Fdom1×1=x1
49 18 46 13 48 2 offval2 Fdom1×1×fF=x-1Fx
50 13 recnd Fdom1xFx
51 50 mulm1d Fdom1x-1Fx=Fx
52 51 mpteq2dva Fdom1x-1Fx=xFx
53 49 52 eqtrd Fdom1×1×fF=xFx
54 id Fdom1Fdom1
55 45 a1i Fdom11
56 54 55 i1fmulc Fdom1×1×fFdom1
57 53 56 eqeltrrd Fdom1xFxdom1
58 57 i1fposd Fdom1xif0FxFx0dom1
59 13 renegcld Fdom1xFx
60 max1 0Fx0if0FxFx0
61 12 59 60 sylancr Fdom1x0if0FxFx0
62 61 ralrimiva Fdom1x0if0FxFx0
63 negex FxV
64 63 21 ifex if0FxFx0V
65 64 a1i Fdom1xif0FxFx0V
66 eqidd Fdom1xif0FxFx0=xif0FxFx0
67 18 19 65 25 66 ofrfval2 Fdom1×0fxif0FxFx0x0if0FxFx0
68 62 67 mpbird Fdom1×0fxif0FxFx0
69 eqid xif0FxFx0=xif0FxFx0
70 64 69 fnmpti xif0FxFx0Fn
71 70 a1i Fdom1xif0FxFx0Fn
72 30 71 0pledm Fdom10𝑝fxif0FxFx0×0fxif0FxFx0
73 68 72 mpbird Fdom10𝑝fxif0FxFx0
74 itg2itg1 xif0FxFx0dom10𝑝fxif0FxFx02xif0FxFx0=1xif0FxFx0
75 58 73 74 syl2anc Fdom12xif0FxFx0=1xif0FxFx0
76 44 75 eqtr3d Fdom12xifx0FxFx0=1xif0FxFx0
77 itg1cl xif0FxFx0dom11xif0FxFx0
78 58 77 syl Fdom11xif0FxFx0
79 76 78 eqeltrd Fdom12xifx0FxFx0
80 13 iblrelem Fdom1xFx𝐿1xFxMblFn2xifx0FxFx02xifx0FxFx0
81 4 40 79 80 mpbir3and Fdom1xFx𝐿1
82 2 81 eqeltrd Fdom1F𝐿1