Metamath Proof Explorer


Theorem idpm2idmp

Description: The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P = Poly 1 R
pm2mpval.c C = N Mat P
pm2mpval.b B = Base C
pm2mpval.m ˙ = Q
pm2mpval.e × ˙ = mulGrp Q
pm2mpval.x X = var 1 A
pm2mpval.a A = N Mat R
pm2mpval.q Q = Poly 1 A
pm2mpval.t T = N pMatToMatPoly R
Assertion idpm2idmp N Fin R Ring T 1 C = 1 Q

Proof

Step Hyp Ref Expression
1 pm2mpval.p P = Poly 1 R
2 pm2mpval.c C = N Mat P
3 pm2mpval.b B = Base C
4 pm2mpval.m ˙ = Q
5 pm2mpval.e × ˙ = mulGrp Q
6 pm2mpval.x X = var 1 A
7 pm2mpval.a A = N Mat R
8 pm2mpval.q Q = Poly 1 A
9 pm2mpval.t T = N pMatToMatPoly R
10 1 2 pmatring N Fin R Ring C Ring
11 eqid 1 C = 1 C
12 3 11 ringidcl C Ring 1 C B
13 10 12 syl N Fin R Ring 1 C B
14 1 2 3 4 5 6 7 8 9 pm2mpfval N Fin R Ring 1 C B T 1 C = Q k 0 1 C decompPMat k ˙ k × ˙ X
15 13 14 mpd3an3 N Fin R Ring T 1 C = Q k 0 1 C decompPMat k ˙ k × ˙ X
16 eqid 0 A = 0 A
17 eqid 1 A = 1 A
18 1 2 11 7 16 17 decpmatid N Fin R Ring k 0 1 C decompPMat k = if k = 0 1 A 0 A
19 18 3expa N Fin R Ring k 0 1 C decompPMat k = if k = 0 1 A 0 A
20 19 oveq1d N Fin R Ring k 0 1 C decompPMat k ˙ k × ˙ X = if k = 0 1 A 0 A ˙ k × ˙ X
21 20 mpteq2dva N Fin R Ring k 0 1 C decompPMat k ˙ k × ˙ X = k 0 if k = 0 1 A 0 A ˙ k × ˙ X
22 21 oveq2d N Fin R Ring Q k 0 1 C decompPMat k ˙ k × ˙ X = Q k 0 if k = 0 1 A 0 A ˙ k × ˙ X
23 ovif if k = 0 1 A 0 A ˙ k × ˙ X = if k = 0 1 A ˙ k × ˙ X 0 A ˙ k × ˙ X
24 7 matring N Fin R Ring A Ring
25 8 ply1sca A Ring A = Scalar Q
26 24 25 syl N Fin R Ring A = Scalar Q
27 26 adantr N Fin R Ring k 0 A = Scalar Q
28 27 fveq2d N Fin R Ring k 0 1 A = 1 Scalar Q
29 28 oveq1d N Fin R Ring k 0 1 A ˙ k × ˙ X = 1 Scalar Q ˙ k × ˙ X
30 8 ply1lmod A Ring Q LMod
31 24 30 syl N Fin R Ring Q LMod
32 eqid mulGrp Q = mulGrp Q
33 eqid Base Q = Base Q
34 8 6 32 5 33 ply1moncl A Ring k 0 k × ˙ X Base Q
35 24 34 sylan N Fin R Ring k 0 k × ˙ X Base Q
36 eqid Scalar Q = Scalar Q
37 eqid 1 Scalar Q = 1 Scalar Q
38 33 36 4 37 lmodvs1 Q LMod k × ˙ X Base Q 1 Scalar Q ˙ k × ˙ X = k × ˙ X
39 31 35 38 syl2an2r N Fin R Ring k 0 1 Scalar Q ˙ k × ˙ X = k × ˙ X
40 29 39 eqtrd N Fin R Ring k 0 1 A ˙ k × ˙ X = k × ˙ X
41 27 fveq2d N Fin R Ring k 0 0 A = 0 Scalar Q
42 41 oveq1d N Fin R Ring k 0 0 A ˙ k × ˙ X = 0 Scalar Q ˙ k × ˙ X
43 eqid 0 Scalar Q = 0 Scalar Q
44 eqid 0 Q = 0 Q
45 33 36 4 43 44 lmod0vs Q LMod k × ˙ X Base Q 0 Scalar Q ˙ k × ˙ X = 0 Q
46 31 35 45 syl2an2r N Fin R Ring k 0 0 Scalar Q ˙ k × ˙ X = 0 Q
47 42 46 eqtrd N Fin R Ring k 0 0 A ˙ k × ˙ X = 0 Q
48 40 47 ifeq12d N Fin R Ring k 0 if k = 0 1 A ˙ k × ˙ X 0 A ˙ k × ˙ X = if k = 0 k × ˙ X 0 Q
49 23 48 eqtrid N Fin R Ring k 0 if k = 0 1 A 0 A ˙ k × ˙ X = if k = 0 k × ˙ X 0 Q
50 49 mpteq2dva N Fin R Ring k 0 if k = 0 1 A 0 A ˙ k × ˙ X = k 0 if k = 0 k × ˙ X 0 Q
51 50 oveq2d N Fin R Ring Q k 0 if k = 0 1 A 0 A ˙ k × ˙ X = Q k 0 if k = 0 k × ˙ X 0 Q
52 8 ply1ring A Ring Q Ring
53 ringmnd Q Ring Q Mnd
54 24 52 53 3syl N Fin R Ring Q Mnd
55 nn0ex 0 V
56 55 a1i N Fin R Ring 0 V
57 0nn0 0 0
58 57 a1i N Fin R Ring 0 0
59 eqid k 0 if k = 0 k × ˙ X 0 Q = k 0 if k = 0 k × ˙ X 0 Q
60 35 ralrimiva N Fin R Ring k 0 k × ˙ X Base Q
61 44 54 56 58 59 60 gsummpt1n0 N Fin R Ring Q k 0 if k = 0 k × ˙ X 0 Q = 0 / k k × ˙ X
62 c0ex 0 V
63 csbov1g 0 V 0 / k k × ˙ X = 0 / k k × ˙ X
64 62 63 mp1i N Fin R Ring 0 / k k × ˙ X = 0 / k k × ˙ X
65 csbvarg 0 V 0 / k k = 0
66 62 65 mp1i N Fin R Ring 0 / k k = 0
67 66 oveq1d N Fin R Ring 0 / k k × ˙ X = 0 × ˙ X
68 8 6 32 5 ply1idvr1 A Ring 0 × ˙ X = 1 Q
69 24 68 syl N Fin R Ring 0 × ˙ X = 1 Q
70 64 67 69 3eqtrd N Fin R Ring 0 / k k × ˙ X = 1 Q
71 51 61 70 3eqtrd N Fin R Ring Q k 0 if k = 0 1 A 0 A ˙ k × ˙ X = 1 Q
72 15 22 71 3eqtrd N Fin R Ring T 1 C = 1 Q