Metamath Proof Explorer


Theorem idpm2idmp

Description: The transformation of the identity polynomial matrix into polynomials over matrices results in the identity of the polynomials over matrices. (Contributed by AV, 18-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P=Poly1R
pm2mpval.c C=NMatP
pm2mpval.b B=BaseC
pm2mpval.m ˙=Q
pm2mpval.e ×˙=mulGrpQ
pm2mpval.x X=var1A
pm2mpval.a A=NMatR
pm2mpval.q Q=Poly1A
pm2mpval.t T=NpMatToMatPolyR
Assertion idpm2idmp NFinRRingT1C=1Q

Proof

Step Hyp Ref Expression
1 pm2mpval.p P=Poly1R
2 pm2mpval.c C=NMatP
3 pm2mpval.b B=BaseC
4 pm2mpval.m ˙=Q
5 pm2mpval.e ×˙=mulGrpQ
6 pm2mpval.x X=var1A
7 pm2mpval.a A=NMatR
8 pm2mpval.q Q=Poly1A
9 pm2mpval.t T=NpMatToMatPolyR
10 1 2 pmatring NFinRRingCRing
11 eqid 1C=1C
12 3 11 ringidcl CRing1CB
13 10 12 syl NFinRRing1CB
14 1 2 3 4 5 6 7 8 9 pm2mpfval NFinRRing1CBT1C=Qk01CdecompPMatk˙k×˙X
15 13 14 mpd3an3 NFinRRingT1C=Qk01CdecompPMatk˙k×˙X
16 eqid 0A=0A
17 eqid 1A=1A
18 1 2 11 7 16 17 decpmatid NFinRRingk01CdecompPMatk=ifk=01A0A
19 18 3expa NFinRRingk01CdecompPMatk=ifk=01A0A
20 19 oveq1d NFinRRingk01CdecompPMatk˙k×˙X=ifk=01A0A˙k×˙X
21 20 mpteq2dva NFinRRingk01CdecompPMatk˙k×˙X=k0ifk=01A0A˙k×˙X
22 21 oveq2d NFinRRingQk01CdecompPMatk˙k×˙X=Qk0ifk=01A0A˙k×˙X
23 ovif ifk=01A0A˙k×˙X=ifk=01A˙k×˙X0A˙k×˙X
24 7 matring NFinRRingARing
25 8 ply1sca ARingA=ScalarQ
26 24 25 syl NFinRRingA=ScalarQ
27 26 adantr NFinRRingk0A=ScalarQ
28 27 fveq2d NFinRRingk01A=1ScalarQ
29 28 oveq1d NFinRRingk01A˙k×˙X=1ScalarQ˙k×˙X
30 8 ply1lmod ARingQLMod
31 24 30 syl NFinRRingQLMod
32 eqid mulGrpQ=mulGrpQ
33 eqid BaseQ=BaseQ
34 8 6 32 5 33 ply1moncl ARingk0k×˙XBaseQ
35 24 34 sylan NFinRRingk0k×˙XBaseQ
36 eqid ScalarQ=ScalarQ
37 eqid 1ScalarQ=1ScalarQ
38 33 36 4 37 lmodvs1 QLModk×˙XBaseQ1ScalarQ˙k×˙X=k×˙X
39 31 35 38 syl2an2r NFinRRingk01ScalarQ˙k×˙X=k×˙X
40 29 39 eqtrd NFinRRingk01A˙k×˙X=k×˙X
41 27 fveq2d NFinRRingk00A=0ScalarQ
42 41 oveq1d NFinRRingk00A˙k×˙X=0ScalarQ˙k×˙X
43 eqid 0ScalarQ=0ScalarQ
44 eqid 0Q=0Q
45 33 36 4 43 44 lmod0vs QLModk×˙XBaseQ0ScalarQ˙k×˙X=0Q
46 31 35 45 syl2an2r NFinRRingk00ScalarQ˙k×˙X=0Q
47 42 46 eqtrd NFinRRingk00A˙k×˙X=0Q
48 40 47 ifeq12d NFinRRingk0ifk=01A˙k×˙X0A˙k×˙X=ifk=0k×˙X0Q
49 23 48 eqtrid NFinRRingk0ifk=01A0A˙k×˙X=ifk=0k×˙X0Q
50 49 mpteq2dva NFinRRingk0ifk=01A0A˙k×˙X=k0ifk=0k×˙X0Q
51 50 oveq2d NFinRRingQk0ifk=01A0A˙k×˙X=Qk0ifk=0k×˙X0Q
52 8 ply1ring ARingQRing
53 ringmnd QRingQMnd
54 24 52 53 3syl NFinRRingQMnd
55 nn0ex 0V
56 55 a1i NFinRRing0V
57 0nn0 00
58 57 a1i NFinRRing00
59 eqid k0ifk=0k×˙X0Q=k0ifk=0k×˙X0Q
60 35 ralrimiva NFinRRingk0k×˙XBaseQ
61 44 54 56 58 59 60 gsummpt1n0 NFinRRingQk0ifk=0k×˙X0Q=0/kk×˙X
62 c0ex 0V
63 csbov1g 0V0/kk×˙X=0/kk×˙X
64 62 63 mp1i NFinRRing0/kk×˙X=0/kk×˙X
65 csbvarg 0V0/kk=0
66 62 65 mp1i NFinRRing0/kk=0
67 66 oveq1d NFinRRing0/kk×˙X=0×˙X
68 8 6 32 5 ply1idvr1 ARing0×˙X=1Q
69 24 68 syl NFinRRing0×˙X=1Q
70 64 67 69 3eqtrd NFinRRing0/kk×˙X=1Q
71 51 61 70 3eqtrd NFinRRingQk0ifk=01A0A˙k×˙X=1Q
72 15 22 71 3eqtrd NFinRRingT1C=1Q