| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pm2mpval.p |
|
| 2 |
|
pm2mpval.c |
|
| 3 |
|
pm2mpval.b |
|
| 4 |
|
pm2mpval.m |
|
| 5 |
|
pm2mpval.e |
|
| 6 |
|
pm2mpval.x |
|
| 7 |
|
pm2mpval.a |
|
| 8 |
|
pm2mpval.q |
|
| 9 |
|
pm2mpval.t |
|
| 10 |
1 2
|
pmatring |
|
| 11 |
|
eqid |
|
| 12 |
3 11
|
ringidcl |
|
| 13 |
10 12
|
syl |
|
| 14 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
|
| 15 |
13 14
|
mpd3an3 |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
1 2 11 7 16 17
|
decpmatid |
|
| 19 |
18
|
3expa |
|
| 20 |
19
|
oveq1d |
|
| 21 |
20
|
mpteq2dva |
|
| 22 |
21
|
oveq2d |
|
| 23 |
|
ovif |
|
| 24 |
7
|
matring |
|
| 25 |
8
|
ply1sca |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
8
|
ply1lmod |
|
| 31 |
24 30
|
syl |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
8 6 32 5 33
|
ply1moncl |
|
| 35 |
24 34
|
sylan |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
33 36 4 37
|
lmodvs1 |
|
| 39 |
31 35 38
|
syl2an2r |
|
| 40 |
29 39
|
eqtrd |
|
| 41 |
27
|
fveq2d |
|
| 42 |
41
|
oveq1d |
|
| 43 |
|
eqid |
|
| 44 |
|
eqid |
|
| 45 |
33 36 4 43 44
|
lmod0vs |
|
| 46 |
31 35 45
|
syl2an2r |
|
| 47 |
42 46
|
eqtrd |
|
| 48 |
40 47
|
ifeq12d |
|
| 49 |
23 48
|
eqtrid |
|
| 50 |
49
|
mpteq2dva |
|
| 51 |
50
|
oveq2d |
|
| 52 |
8
|
ply1ring |
|
| 53 |
|
ringmnd |
|
| 54 |
24 52 53
|
3syl |
|
| 55 |
|
nn0ex |
|
| 56 |
55
|
a1i |
|
| 57 |
|
0nn0 |
|
| 58 |
57
|
a1i |
|
| 59 |
|
eqid |
|
| 60 |
35
|
ralrimiva |
|
| 61 |
44 54 56 58 59 60
|
gsummpt1n0 |
|
| 62 |
|
c0ex |
|
| 63 |
|
csbov1g |
|
| 64 |
62 63
|
mp1i |
|
| 65 |
|
csbvarg |
|
| 66 |
62 65
|
mp1i |
|
| 67 |
66
|
oveq1d |
|
| 68 |
8 6 32 5
|
ply1idvr1 |
|
| 69 |
24 68
|
syl |
|
| 70 |
64 67 69
|
3eqtrd |
|
| 71 |
51 61 70
|
3eqtrd |
|
| 72 |
15 22 71
|
3eqtrd |
|