Metamath Proof Explorer


Theorem infdifsn

Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion infdifsn ωAABA

Proof

Step Hyp Ref Expression
1 brdomi ωAff:ω1-1A
2 1 adantr ωABAff:ω1-1A
3 reldom Rel
4 3 brrelex2i ωAAV
5 4 ad2antrr ωABAf:ω1-1AAV
6 simplr ωABAf:ω1-1ABA
7 f1f f:ω1-1Af:ωA
8 7 adantl ωABAf:ω1-1Af:ωA
9 peano1 ω
10 ffvelcdm f:ωAωfA
11 8 9 10 sylancl ωABAf:ω1-1AfA
12 difsnen AVBAfAABAf
13 5 6 11 12 syl3anc ωABAf:ω1-1AABAf
14 vex fV
15 f1f1orn f:ω1-1Af:ω1-1 ontoranf
16 15 adantl ωABAf:ω1-1Af:ω1-1 ontoranf
17 f1oen3g fVf:ω1-1 ontoranfωranf
18 14 16 17 sylancr ωABAf:ω1-1Aωranf
19 18 ensymd ωABAf:ω1-1Aranfω
20 3 brrelex1i ωAωV
21 20 ad2antrr ωABAf:ω1-1AωV
22 limom Limω
23 22 limenpsi ωVωω
24 21 23 syl ωABAf:ω1-1Aωω
25 14 resex fωV
26 simpr ωABAf:ω1-1Af:ω1-1A
27 difss ωω
28 f1ores f:ω1-1Aωωfω:ω1-1 ontofω
29 26 27 28 sylancl ωABAf:ω1-1Afω:ω1-1 ontofω
30 f1oen3g fωVfω:ω1-1 ontofωωfω
31 25 29 30 sylancr ωABAf:ω1-1Aωfω
32 f1orn f:ω1-1 ontoranffFnωFunf-1
33 32 simprbi f:ω1-1 ontoranfFunf-1
34 imadif Funf-1fω=fωf
35 16 33 34 3syl ωABAf:ω1-1Afω=fωf
36 f1fn f:ω1-1AfFnω
37 36 adantl ωABAf:ω1-1AfFnω
38 fnima fFnωfω=ranf
39 37 38 syl ωABAf:ω1-1Afω=ranf
40 fnsnfv fFnωωf=f
41 37 9 40 sylancl ωABAf:ω1-1Af=f
42 41 eqcomd ωABAf:ω1-1Af=f
43 39 42 difeq12d ωABAf:ω1-1Afωf=ranff
44 35 43 eqtrd ωABAf:ω1-1Afω=ranff
45 31 44 breqtrd ωABAf:ω1-1Aωranff
46 entr ωωωranffωranff
47 24 45 46 syl2anc ωABAf:ω1-1Aωranff
48 entr ranfωωranffranfranff
49 19 47 48 syl2anc ωABAf:ω1-1Aranfranff
50 difexg AVAranfV
51 enrefg AranfVAranfAranf
52 5 50 51 3syl ωABAf:ω1-1AAranfAranf
53 disjdif ranfAranf=
54 53 a1i ωABAf:ω1-1AranfAranf=
55 difss ranffranf
56 ssrin ranffranfranffAranfranfAranf
57 55 56 ax-mp ranffAranfranfAranf
58 sseq0 ranffAranfranfAranfranfAranf=ranffAranf=
59 57 53 58 mp2an ranffAranf=
60 59 a1i ωABAf:ω1-1AranffAranf=
61 unen ranfranffAranfAranfranfAranf=ranffAranf=ranfAranfranffAranf
62 49 52 54 60 61 syl22anc ωABAf:ω1-1AranfAranfranffAranf
63 8 frnd ωABAf:ω1-1AranfA
64 undif ranfAranfAranf=A
65 63 64 sylib ωABAf:ω1-1AranfAranf=A
66 uncom ranffAranf=Aranfranff
67 eldifn fAranf¬franf
68 fnfvelrn fFnωωfranf
69 37 9 68 sylancl ωABAf:ω1-1Afranf
70 67 69 nsyl3 ωABAf:ω1-1A¬fAranf
71 disjsn Aranff=¬fAranf
72 70 71 sylibr ωABAf:ω1-1AAranff=
73 undif4 Aranff=Aranfranff=Aranfranff
74 72 73 syl ωABAf:ω1-1AAranfranff=Aranfranff
75 uncom Aranfranf=ranfAranf
76 75 65 eqtrid ωABAf:ω1-1AAranfranf=A
77 76 difeq1d ωABAf:ω1-1AAranfranff=Af
78 74 77 eqtrd ωABAf:ω1-1AAranfranff=Af
79 66 78 eqtrid ωABAf:ω1-1AranffAranf=Af
80 62 65 79 3brtr3d ωABAf:ω1-1AAAf
81 80 ensymd ωABAf:ω1-1AAfA
82 entr ABAfAfAABA
83 13 81 82 syl2anc ωABAf:ω1-1AABA
84 2 83 exlimddv ωABAABA
85 difsn ¬BAAB=A
86 85 adantl ωA¬BAAB=A
87 enrefg AVAA
88 4 87 syl ωAAA
89 88 adantr ωA¬BAAA
90 86 89 eqbrtrd ωA¬BAABA
91 84 90 pm2.61dan ωAABA