Metamath Proof Explorer


Theorem infdifsn

Description: Removing a singleton from an infinite set does not change the cardinality of the set. (Contributed by Mario Carneiro, 30-Apr-2015) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion infdifsn ω A A B A

Proof

Step Hyp Ref Expression
1 brdomi ω A f f : ω 1-1 A
2 1 adantr ω A B A f f : ω 1-1 A
3 reldom Rel
4 3 brrelex2i ω A A V
5 4 ad2antrr ω A B A f : ω 1-1 A A V
6 simplr ω A B A f : ω 1-1 A B A
7 f1f f : ω 1-1 A f : ω A
8 7 adantl ω A B A f : ω 1-1 A f : ω A
9 peano1 ω
10 ffvelrn f : ω A ω f A
11 8 9 10 sylancl ω A B A f : ω 1-1 A f A
12 difsnen A V B A f A A B A f
13 5 6 11 12 syl3anc ω A B A f : ω 1-1 A A B A f
14 vex f V
15 f1f1orn f : ω 1-1 A f : ω 1-1 onto ran f
16 15 adantl ω A B A f : ω 1-1 A f : ω 1-1 onto ran f
17 f1oen3g f V f : ω 1-1 onto ran f ω ran f
18 14 16 17 sylancr ω A B A f : ω 1-1 A ω ran f
19 18 ensymd ω A B A f : ω 1-1 A ran f ω
20 3 brrelex1i ω A ω V
21 20 ad2antrr ω A B A f : ω 1-1 A ω V
22 limom Lim ω
23 22 limenpsi ω V ω ω
24 21 23 syl ω A B A f : ω 1-1 A ω ω
25 14 resex f ω V
26 simpr ω A B A f : ω 1-1 A f : ω 1-1 A
27 difss ω ω
28 f1ores f : ω 1-1 A ω ω f ω : ω 1-1 onto f ω
29 26 27 28 sylancl ω A B A f : ω 1-1 A f ω : ω 1-1 onto f ω
30 f1oen3g f ω V f ω : ω 1-1 onto f ω ω f ω
31 25 29 30 sylancr ω A B A f : ω 1-1 A ω f ω
32 f1orn f : ω 1-1 onto ran f f Fn ω Fun f -1
33 32 simprbi f : ω 1-1 onto ran f Fun f -1
34 imadif Fun f -1 f ω = f ω f
35 16 33 34 3syl ω A B A f : ω 1-1 A f ω = f ω f
36 f1fn f : ω 1-1 A f Fn ω
37 36 adantl ω A B A f : ω 1-1 A f Fn ω
38 fnima f Fn ω f ω = ran f
39 37 38 syl ω A B A f : ω 1-1 A f ω = ran f
40 fnsnfv f Fn ω ω f = f
41 37 9 40 sylancl ω A B A f : ω 1-1 A f = f
42 41 eqcomd ω A B A f : ω 1-1 A f = f
43 39 42 difeq12d ω A B A f : ω 1-1 A f ω f = ran f f
44 35 43 eqtrd ω A B A f : ω 1-1 A f ω = ran f f
45 31 44 breqtrd ω A B A f : ω 1-1 A ω ran f f
46 entr ω ω ω ran f f ω ran f f
47 24 45 46 syl2anc ω A B A f : ω 1-1 A ω ran f f
48 entr ran f ω ω ran f f ran f ran f f
49 19 47 48 syl2anc ω A B A f : ω 1-1 A ran f ran f f
50 difexg A V A ran f V
51 enrefg A ran f V A ran f A ran f
52 5 50 51 3syl ω A B A f : ω 1-1 A A ran f A ran f
53 disjdif ran f A ran f =
54 53 a1i ω A B A f : ω 1-1 A ran f A ran f =
55 difss ran f f ran f
56 ssrin ran f f ran f ran f f A ran f ran f A ran f
57 55 56 ax-mp ran f f A ran f ran f A ran f
58 sseq0 ran f f A ran f ran f A ran f ran f A ran f = ran f f A ran f =
59 57 53 58 mp2an ran f f A ran f =
60 59 a1i ω A B A f : ω 1-1 A ran f f A ran f =
61 unen ran f ran f f A ran f A ran f ran f A ran f = ran f f A ran f = ran f A ran f ran f f A ran f
62 49 52 54 60 61 syl22anc ω A B A f : ω 1-1 A ran f A ran f ran f f A ran f
63 8 frnd ω A B A f : ω 1-1 A ran f A
64 undif ran f A ran f A ran f = A
65 63 64 sylib ω A B A f : ω 1-1 A ran f A ran f = A
66 uncom ran f f A ran f = A ran f ran f f
67 eldifn f A ran f ¬ f ran f
68 fnfvelrn f Fn ω ω f ran f
69 37 9 68 sylancl ω A B A f : ω 1-1 A f ran f
70 67 69 nsyl3 ω A B A f : ω 1-1 A ¬ f A ran f
71 disjsn A ran f f = ¬ f A ran f
72 70 71 sylibr ω A B A f : ω 1-1 A A ran f f =
73 undif4 A ran f f = A ran f ran f f = A ran f ran f f
74 72 73 syl ω A B A f : ω 1-1 A A ran f ran f f = A ran f ran f f
75 uncom A ran f ran f = ran f A ran f
76 75 65 syl5eq ω A B A f : ω 1-1 A A ran f ran f = A
77 76 difeq1d ω A B A f : ω 1-1 A A ran f ran f f = A f
78 74 77 eqtrd ω A B A f : ω 1-1 A A ran f ran f f = A f
79 66 78 syl5eq ω A B A f : ω 1-1 A ran f f A ran f = A f
80 62 65 79 3brtr3d ω A B A f : ω 1-1 A A A f
81 80 ensymd ω A B A f : ω 1-1 A A f A
82 entr A B A f A f A A B A
83 13 81 82 syl2anc ω A B A f : ω 1-1 A A B A
84 2 83 exlimddv ω A B A A B A
85 difsn ¬ B A A B = A
86 85 adantl ω A ¬ B A A B = A
87 enrefg A V A A
88 4 87 syl ω A A A
89 88 adantr ω A ¬ B A A A
90 86 89 eqbrtrd ω A ¬ B A A B A
91 84 90 pm2.61dan ω A A B A