Metamath Proof Explorer


Theorem infm3

Description: The completeness axiom for reals in terms of infimum: a nonempty, bounded-below set of reals has an infimum. (This theorem is the dual of sup3 .) (Contributed by NM, 14-Jun-2005)

Ref Expression
Assertion infm3 AAxyAxyxyA¬y<xyx<yzAz<y

Proof

Step Hyp Ref Expression
1 ssel AvAv
2 1 pm4.71rd AvAvvA
3 2 exbidv AvvAvvvA
4 df-rex vvAvvvA
5 renegcl ww
6 infm3lem vwv=w
7 eleq1 v=wvAwA
8 5 6 7 rexxfr vvAwwA
9 4 8 bitr3i vvvAwwA
10 3 9 bitrdi AvvAwwA
11 n0 AvvA
12 rabn0 w|wAwwA
13 10 11 12 3bitr4g AAw|wA
14 ssel AyAy
15 14 pm4.71rd AyAyyA
16 15 imbi1d AyAxyyyAxy
17 impexp yyAxyyyAxy
18 16 17 bitrdi AyAxyyyAxy
19 18 albidv AyyAxyyyyAxy
20 df-ral yAxyyyAxy
21 renegcl vv
22 infm3lem yvy=v
23 eleq1 y=vyAvA
24 breq2 y=vxyxv
25 23 24 imbi12d y=vyAxyvAxv
26 21 22 25 ralxfr yyAxyvvAxv
27 df-ral yyAxyyyyAxy
28 26 27 bitr3i vvAxvyyyAxy
29 19 20 28 3bitr4g AyAxyvvAxv
30 29 rexbidv AxyAxyxvvAxv
31 renegcl uu
32 infm3lem xux=u
33 breq1 x=uxvuv
34 33 imbi2d x=uvAxvvAuv
35 34 ralbidv x=uvvAxvvvAuv
36 31 32 35 rexxfr xvvAxvuvvAuv
37 negeq w=vw=v
38 37 eleq1d w=vwAvA
39 38 elrab vw|wAvvA
40 39 imbi1i vw|wAvuvvAvu
41 impexp vvAvuvvAvu
42 40 41 bitri vw|wAvuvvAvu
43 42 albii vvw|wAvuvvvAvu
44 df-ral vw|wAvuvvw|wAvu
45 df-ral vvAvuvvvAvu
46 43 44 45 3bitr4ri vvAvuvw|wAvu
47 leneg vuvuuv
48 47 ancoms uvvuuv
49 48 imbi2d uvvAvuvAuv
50 49 ralbidva uvvAvuvvAuv
51 46 50 bitr3id uvw|wAvuvvAuv
52 51 rexbiia uvw|wAvuuvvAuv
53 36 52 bitr4i xvvAxvuvw|wAvu
54 30 53 bitrdi AxyAxyuvw|wAvu
55 13 54 anbi12d AAxyAxyw|wAuvw|wAvu
56 ssrab2 w|wA
57 sup3 w|wAw|wAuvw|wAvuuvw|wA¬u<vvv<utw|wAv<t
58 56 57 mp3an1 w|wAuvw|wAvuuvw|wA¬u<vvv<utw|wAv<t
59 55 58 syl6bi AAxyAxyuvw|wA¬u<vvv<utw|wAv<t
60 15 imbi1d AyA¬y<xyyA¬y<x
61 impexp yyA¬y<xyyA¬y<x
62 60 61 bitrdi AyA¬y<xyyA¬y<x
63 62 albidv AyyA¬y<xyyyA¬y<x
64 df-ral yA¬y<xyyA¬y<x
65 breq1 y=vy<xv<x
66 65 notbid y=v¬y<x¬v<x
67 23 66 imbi12d y=vyA¬y<xvA¬v<x
68 21 22 67 ralxfr yyA¬y<xvvA¬v<x
69 df-ral yyA¬y<xyyyA¬y<x
70 68 69 bitr3i vvA¬v<xyyyA¬y<x
71 63 64 70 3bitr4g AyA¬y<xvvA¬v<x
72 breq2 y=vx<yx<v
73 breq2 y=vz<yz<v
74 73 rexbidv y=vzAz<yzAz<v
75 72 74 imbi12d y=vx<yzAz<yx<vzAz<v
76 21 22 75 ralxfr yx<yzAz<yvx<vzAz<v
77 ssel AzAz
78 77 adantrd AzAz<vz
79 78 pm4.71rd AzAz<vzzAz<v
80 79 exbidv AzzAz<vzzzAz<v
81 df-rex zAz<vzzAz<v
82 renegcl tt
83 infm3lem ztz=t
84 eleq1 z=tzAtA
85 breq1 z=tz<vt<v
86 84 85 anbi12d z=tzAz<vtAt<v
87 82 83 86 rexxfr zzAz<vttAt<v
88 df-rex zzAz<vzzzAz<v
89 87 88 bitr3i ttAt<vzzzAz<v
90 80 81 89 3bitr4g AzAz<vttAt<v
91 90 imbi2d Ax<vzAz<vx<vttAt<v
92 91 ralbidv Avx<vzAz<vvx<vttAt<v
93 76 92 bitrid Ayx<yzAz<yvx<vttAt<v
94 71 93 anbi12d AyA¬y<xyx<yzAz<yvvA¬v<xvx<vttAt<v
95 94 rexbidv AxyA¬y<xyx<yzAz<yxvvA¬v<xvx<vttAt<v
96 breq2 x=uv<xv<u
97 96 notbid x=u¬v<x¬v<u
98 97 imbi2d x=uvA¬v<xvA¬v<u
99 98 ralbidv x=uvvA¬v<xvvA¬v<u
100 breq1 x=ux<vu<v
101 100 imbi1d x=ux<vttAt<vu<vttAt<v
102 101 ralbidv x=uvx<vttAt<vvu<vttAt<v
103 99 102 anbi12d x=uvvA¬v<xvx<vttAt<vvvA¬v<uvu<vttAt<v
104 31 32 103 rexxfr xvvA¬v<xvx<vttAt<vuvvA¬v<uvu<vttAt<v
105 39 imbi1i vw|wA¬u<vvvA¬u<v
106 impexp vvA¬u<vvvA¬u<v
107 105 106 bitri vw|wA¬u<vvvA¬u<v
108 107 albii vvw|wA¬u<vvvvA¬u<v
109 df-ral vw|wA¬u<vvvw|wA¬u<v
110 df-ral vvA¬u<vvvvA¬u<v
111 108 109 110 3bitr4ri vvA¬u<vvw|wA¬u<v
112 ltneg uvu<vv<u
113 112 notbid uv¬u<v¬v<u
114 113 imbi2d uvvA¬u<vvA¬v<u
115 114 ralbidva uvvA¬u<vvvA¬v<u
116 111 115 bitr3id uvw|wA¬u<vvvA¬v<u
117 ltneg vuv<uu<v
118 117 ancoms uvv<uu<v
119 negeq w=tw=t
120 119 eleq1d w=twAtA
121 120 rexrab tw|wAv<tttAv<t
122 ltneg vtv<tt<v
123 122 anbi2d vttAv<ttAt<v
124 123 rexbidva vttAv<tttAt<v
125 121 124 bitrid vtw|wAv<tttAt<v
126 125 adantl uvtw|wAv<tttAt<v
127 118 126 imbi12d uvv<utw|wAv<tu<vttAt<v
128 127 ralbidva uvv<utw|wAv<tvu<vttAt<v
129 116 128 anbi12d uvw|wA¬u<vvv<utw|wAv<tvvA¬v<uvu<vttAt<v
130 129 rexbiia uvw|wA¬u<vvv<utw|wAv<tuvvA¬v<uvu<vttAt<v
131 104 130 bitr4i xvvA¬v<xvx<vttAt<vuvw|wA¬u<vvv<utw|wAv<t
132 95 131 bitrdi AxyA¬y<xyx<yzAz<yuvw|wA¬u<vvv<utw|wAv<t
133 59 132 sylibrd AAxyAxyxyA¬y<xyx<yzAz<y
134 133 3impib AAxyAxyxyA¬y<xyx<yzAz<y